In South America, too, there were no true dogs or cats during the long period of isolation that we are discussing but, as in Australia, there were marsupial equivalents. Probably the most spectacular was Thylacosmilus, which looked exactly like the recently extinct sabretooth ‘tiger’ of the Old World, only more so if you see what I mean. Its daggered gape was even wider, and I imagine that it was even more terrifying. Its name records its superficial affinity with the sabre-tooth (Smilodon) and the Tasmanian wolf (Thylacinus), but in terms of ancestry it is very remote from both. It is slightly closer to the thylacine since both are marsupials, but the two have evolved their big carnivore design independently on different continents; independently of each other and of the placental carnivores, the true cats and dogs of the Old World.
Australia, South America and the Old World offer numerous further examples of multiple convergent evolution. Australia has a marsupial ‘mole’, superficially almost indistinguishable from the familiar moles of other continents, but pouched, making its living in the same way as other moles and with the same enormously strengthened forepaws for digging. There is a pouched mouse in Australia, though in this case the resemblance is not so close and it does not make its living in quite the same way. Anteating (where ‘ants’ are deemed for convenience to include termites — another convergence as we shall see) is a ‘trade’ that is filled by a variety of convergent mammals. They may be subdivided into anteaters that burrow, anteaters that climb trees and anteaters that wander over the ground. In Australia, as we might expect, there is a marsupial anteater. Called Myrmecobius, it has a long thin snout for poking into ants’ nests, and a long sticky tongue with which it mops up its prey. It is a ground-dwelling anteater. Australia also has a burrowing anteater, the spiny anteater. This is not a marsupial, but a member of the group of egg-laying mammals, the monotremes, so remote from us that marsupials are our close cousins by comparison. The spiny anteater, too, has a long pointed snout, but its spines give it a superficial resemblance to a hedgehog rather than to another typical anteater.
South America could easily have had a marsupial anteater, alongside its marsupial sabre-tooth ‘tiger’, but as it happens the anteater trade was early filled by placental mammals instead. The largest of today’s anteaters is Myrmecophaga (which just means anteater in Greek), the large ground-wandering anteater of South America and probably the most extreme anteating specialist in the world. Like the Australian marsupial Myrmecobius, it has a long and pointed snout, extremely long and pointed in this case, and an extremely long sticky tongue. South America also has a small tree-climbing anteater, which is a close cousin of Myrmecophaga and looks like a miniature and less extreme version of it, and a third, intermediate form. Although placental mammals, these anteaters are very far from any Old World placentals. They belong to a uniquely South American family, which also includes armadillos and sloths. This ancient placental family coexisted with the marsupials from the early days of the continent’s isolation.
The Old World anteaters include various species of pangolin in Africa and Asia, ranging from tree-climbing forms to digging forms, all looking a bit like fircones with pointed snouts. Also in Africa is the weird ant-bear or aardvark, which is partially specialized for digging. A feature that characterizes all anteaters, whether marsupial, monotreme or placental, is an extremely low metabolic rate. The metabolic rate is the rate at which their chemical ‘fires’ burn, most easily measured as the blood temperature. There is a tendency for metabolic rate to depend on body size in mammals generally. Smaller animals tend to have higher metabolic rates, just as the engines of small cars tend to turn over at a higher rate than those of larger cars. But some animals have high metabolic rates for their size, and anteaters, of whatever ancestry and affinities, tend to have very low metabolic rates for their size. It is not obvious why this is, but it is so strikingly convergent among animals that have nothing else in common but their anteating habit, that it almost certainly is somehow related to this habit.
As we have seen, the ‘ants’ that anteaters eat are often not true ants at all, but termites. Termites are often known as ‘white ants’, but they are related to cockroaches, rather than to true ants, which are related to bees and wasps. Termites resemble ants superficially because they have convergently adopted the same habits. The same range of habits, I should say, because there are many different branches of the ant/termite trade, and both ants and termites have independently adopted most of them. As so often with convergent evolution, the differences are revealing as well as the similarities.
Both ants and termites live in large colonies consisting mostly of sterile, wingless workers, dedicated to the efficient production of winged reproductive castes which fly off to found new colonies. An interesting difference is that in ants the workers are all sterile females, whereas in termites they are sterile males and sterile females. Both ant and termite colonies have one (or sometimes several) enlarged ‘queens’, sometimes (in both ants and termites) grotesquely enlarged. In both ants and termites the workers can include specialist castes such as soldiers. Sometimes these are such dedicated fighting machines, especially in their huge jaws (in the case of ants, but ‘gun-turrets’ for chemical warfare in the case of termites), that they are incapable of feeding themselves and have to be fed by non-soldier workers. Particular species of ants parallel particular species of termites. For example, the habit of fungus-farming has arisen independently in ants (in the New World) and termites (in Africa). The ants (or termites) forage for plant material that they do not digest themselves but make into compost on which they grow fungi. It is the fungi that they themselves eat. The fungi, in both cases, grow nowhere else than in the nests of ants or termites, respectively. The fungus-farming habit has also been discovered independently and convergently (more than once) by several species of beetles.
There are also interesting convergences within the ants. Although most ant colonies live a settled existence in a fixed nest, there seems to be a successful living to be made by wandering in enormous pillaging armies. This is called the legionary habit. Obviously all ants walk about and forage, but most kinds return to a fixed nest with their booty, and the queen and the brood are left behind in the nest. The key to the wandering legionary habit, on the other hand, is that the armies take the brood and the queen with them. The eggs and larvae are carried in the jaws of workers. In Africa the legionary habit has been developed by the so-called driver ants. In Central and South America the parallel ‘army ants’ are very similar to driver ants in habit and appearance. They are not particularly closely related. They have certainly evolved the characteristics of the ‘army’ trade independently and convergently.
Both driver ants and army ants have exceptionally large colonies, up to a million in army ants, up to about 20 million in driver ants. Both have nomadic phases alternating with ‘statary’ phases, relatively stable encampments or ‘bivouacs’. Army ants and driver ants, or rather their colonies taken together as amoeba-like units, are both ruthless and terrible predators of their respective jungles. Both cut to pieces anything animal in their path, and both have acquired a mystique of terror in their own land. Villagers in parts of South America are reputed traditionally to vacate their villages, lock, stock and barrel when a large ant army is approaching, and to return when the legions have marched through, having cleaned out every cockroach, spider and scorpion even from the thatched roofs. I remember as a child in Africa being more frightened of driver ants than of lions or crocodiles. It is worth getting this formidable reputation into perspective by quoting the words of Edward O. Wilson, the world’s foremost authority on ants as well as the author of Sociobiology:
In answer to the single question I am asked most frequently about ants, I can give the following answer: No, driver ants are not really the terror of the jungle. Although the driver ant colony is an ‘animal’ weighing in excess of 20 kg and possessing on the order of 20 million mouths and stings and is surely the most formidable creation of the insect worl
d, it still does not match up to the lurid stories told about it. After all, the swarm can only cover about a metre of ground every three minutes. Any competent bush mouse, not to mention man or elephant, can step aside and contemplate the whole grassroots frenzy at leisure, an object less of menace than of strangeness and wonder, the culmination of an evolutionary story as different from that of mammals as it is possible to conceive in this world.
As an adult in Panama I have stepped aside and contemplated the New World equivalent of the driver ants that I had feared as a child in Africa, flowing by me like a crackling river, and I can testify to the strangeness and wonder. Hour after hour the legions marched past, walking as much over each others’ bodies as over the ground, while I waited for the queen. Finally she came, and hers was an awesome presence. It was impossible to see her body. She appeared only as a moving wave of worker frenzy, a boiling peristaltic ball of ants with linked arms. She was somewhere in the middle of the seething ball of workers, while all around it the massed ranks of soldiers faced threateningly outwards with jaws agape, every one prepared to kill and to die in defence of the queen. Forgive my curiosity to see her: I prodded the ball of workers with a long stick, in a vain attempt to flush out the queen. Instantly 20 soldiers buried their massively muscled pincers in my stick, possibly never to let go, while dozens more swarmed up the stick causing me to let go with alacrity.
I never did glimpse the queen, but somewhere inside that boiling ball she was, the central data bank, the repository of the master DNA of the whole colony. Those gaping soldiers were prepared to die for the queen, not because they loved their mother, not because they had been drilled in the ideals of patriotism, but simply because their brains and their jaws were built by genes stamped from the master die carried in the queen herself. They behaved like brave soldiers because they had inherited the genes of a long line of ancestral queens whose lives, and whose genes, had been saved by soldiers as brave as themselves. My soldiers had inherited the same genes from the present queen as those old soldiers had inherited from the ancestral queens. My soldiers were guarding the master copies of the very instructions that made them do the guarding. They were guarding the wisdom of their ancestors, the Ark of the Covenant. These strange statements will be made plain in the next chapter.
I felt the strangeness then, and the wonder, not unmixed with revivals of half-forgotten fears, but transfigured and enhanced by a mature understanding, which I had lacked as a child in Africa, of what the whole performance was for. Enhanced, too, by the knowledge that this story of the legions had reached the same evolutionary culmination not once but twice. These were not the driver ants of my childhood nightmares, however similar they might be, but remote, New World cousins. They were doing the same thing as the driver ants, and for the same reasons. It was night now and I turned for home, an awestruck child again, but joyful in the new world of understanding that had supplanted the dark, African fears.
CHAPTER 5
The power and the archives
It is raining DNA outside. On the bank of the Oxford canal at the bottom of my garden is a large willow tree, and it is pumping downy seeds into the air. There is no consistent air movement, and the seeds are drifting outwards in all directions from the tree. Up and down the canal, as far as my binoculars can reach, the water is white with floating cottony flecks, and we can be sure that they have carpeted the ground to much the same radius in other directions too. The cotton wool is mostly made of cellulose, and it dwarfs the tiny capsule that contains the DNA, the genetic information. The DNA content must be a small proportion of the total, so why did I say that it was raining DNA rather than cellulose? The answer is that it is the DNA that matters. The cellulose fluff, although more bulky, is just a parachute, to be discarded. The whole performance, cotton wool, catkins, tree and all, is in aid of one thing and one thing only, the spreading of DNA around the countryside. Not just any DNA, but DNA whose coded characters spell out specific instructions for building willow trees that will shed a new generation of downy seeds. Those fluffy specks are, literally, spreading instructions for making themselves. They are there because their ancestors succeeded in doing the same. It is raining instructions out there; it’s raining programs; it’s raining tree-growing, fluff-spreading, algorithms. That is not a metaphor, it is the plain truth. It couldn’t be any plainer if it were raining floppy discs.
It is plain and it is true, but it hasn’t long been understood. A few years ago, if you had asked almost any biologist what was special about living things as opposed to nonliving things, he would have told you about a special substance called protoplasm. Protoplasm wasn’t like any other substance; it was vital, vibrant, throbbing, pulsating, ‘irritable’ (a schoolmarmish way of saying responsive). If you took a living body and cut it up into ever smaller pieces, you would eventually come down to specks of pure protoplasm. At one time in the last century, a real-life counterpart of Arthur Conan Doyle’s Professor Challenger thought that the ‘globigerina ooze’ at the bottom of the sea was pure protoplasm. When I was a schoolboy, elderly textbook authors still wrote about protoplasm although, by then, they really should have known better. Nowadays you never hear or see the word. It is as dead as phlogiston and the universal aether. There is nothing special about the substances from which living things are made. Living things are collections of molecules, like everything else.
What is special is that these molecules are put together in much more complicated patterns than the molecules of nonliving things, and this putting together is done by following programs, sets of instructions for how to develop, which the organisms carry around inside themselves. Maybe they do vibrate and throb and pulsate with ‘irritability’, and glow with ‘living’ warmth, but these properties all emerge incidentally. What lies at the heart of every living thing is not a fire, not warm breath, not a ‘spark of life’. It is information, words, instructions. If you want a metaphor, don’t think of fires and sparks and breath. Think, instead, of a billion discrete, digital characters carved in tablets of crystal. If you want to understand life, don’t think about vibrant, throbbing gels and oozes, think about information technology. It is this that I was hinting at in the previous chapter, when I referred to the queen ant as the central data bank.
The basic requirement for an advanced information technology is some kind of storage medium with a large number of memory locations. Each location must be capable of being in one of a discrete number of states. This is true, anyway, of the digital information technology that now dominates our world of artifice. There is an alternative kind of information technology based upon analogue information. The information on an ordinary gramophone record is analogue. It is stored in a wavy groove. The information on a modern laser disc (often called ‘compact disc’, which is a pity, because the name is uninformative and also usually mispronounced with the stress on the first syllable) is digital, stored in a series of tiny pits, each of which is either definitely there or definitely not there: there are no half measures. That is the diagnostic feature of a digital system: its fundamental elements are either definitely in one state or definitely in another state, with no half measures and no intermediates or compromises.
The information technology of the genes is digital. This fact was discovered by Gregor Mendel in the last century, although he wouldn’t have put it like that. Mendel showed that we don’t blend our inheritance from our two parents. We receive our inheritance in discrete particles. As far as each particle is concerned, we either inherit it or we don’t. Actually, as R. A. Fisher, one of the founding fathers of what is now called neo-Darwinism, has pointed out, this fact of particulate inheritance has always been staring us in the face, every time we think about sex. We inherit attributes from a male and a female parent, but each of us is either male or female, not hermaphrodite. Each new baby born has an approximately equal probability of inheriting maleness or femaleness, but any one baby inherits only one of these, and doesn’t combine the two. We now know that the same goes for al
l our particles of inheritance. They don’t blend, but remain discrete and separate as they shuffle and reshuffle their way down the generations. Of course there is often a powerful appearance of blending in the effects that the genetic units have on bodies. If a tall person mates with a short person, or a black person with a white person, their offspring are often intermediate. But the appearance of blending applies only to effects on bodies, and is due to the summed small effects of large numbers of particles. The particles themselves remain separate and discrete when it comes to being passed on to the next generation.
The distinction between blending inheritance and particulate inheritance has been of great importance in the history of evolutionary ideas. In Darwin’s time everybody (except Mendel who, tucked away in his monastery, was unfortunately ignored until after his death) thought that inheritance was blending. A Scottish engineer called Fleeming Jenkin pointed out that the fact (as it was thought to be) of blending inheritance all but ruled out natural selection as a plausible theory of evolution. Ernst Mayr rather unkindly remarks that Jenkin’s article ‘is based on all the usual prejudices and misunderstandings of the physical scientists’. Nevertheless, Darwin was deeply worried by Jenkin’s argument. It was most colourfully embodied in a parable of a white man shipwrecked on an island inhabited by ‘negroes’:
grant him every advantage which we can conceive a white to possess over the native; concede that in the struggle for existence his chance of a long life will be much superior to that of the native chiefs; yet from all these admissions, there does not follow the conclusion that, after a limited or unlimited number of generations, the inhabitants of the island will be white. Our shipwrecked hero would probably become king; he would kill a great many blacks in the struggle for existence; he would have a great many wives and children, while many of his subjects would live and die as bachelors … Our white’s qualities would certainly tend very much to preserve him to a good old age, and yet he would not suffice in any number of generations to turn his subjects’ descendants white … In the first generation there will be some dozens of intelligent young mulattoes, much superior in average intelligence to the negroes. We might expect the throne for some generations to be occupied by a more or less yellow king; but can any one believe that the whole island will gradually acquire a white, or even a yellow population, or that the islanders would acquire the energy, courage, ingenuity, patience, self-control, endurance, in virtue of which qualities our hero killed so many of their ancestors, and begot so many children; these qualities, in fact, which the struggle for existence would select, if it could select anything?
The Blind Watchmaker Page 15