by The Design
09 Feb 04:27 1604 cM
Matagamon, McKenny
314.2 202 898
Ireson
10 Feb 05:07 1605 Cm
Dr 22m to 61/0006 · el+187m · 15725m · toward Ireson Hill after MAHLI Cary's Mills
314.8 201 887
Hill
11 Feb 05:47 1606 Cm
A
In-situ Quoddy & Pogy, APXS thermal characterization
315.4 202 896
12 Feb 06:26 1607 Cm
drill diagnostics, thermal characterization of RPAM
316.0 203 887 0.91
13 Feb 07:06 1608 CM
Dr 9m to 61/0162 · el+187m · 15735m · to Ireson Hill, drill diagnostics, MAHLI compression tests 316.6 204 889 1.04
14 Feb 07:45 1609 CM
A
In-situ Perry & Spurwink, MAHLI Passagassawakeag
317.2 202 891
15 Feb 08:25 1610 CM
Dr 26m to 61/0258 · el+189m · 15761m · toward Sandy Point Beach (dune stop 2), drill diag
317.7 203 882 1.20
ndy
(Sa 16 Feb 09:05 1611 cm
Dr 23m to 61/0462 · el+191m · 15785m · toward Sandy Point Beach after MAHLI Patch Mountain 318.3
Appendix: Curiosity Activity Summary 391
Area Noon UTC
Sol RS Arm Activity Summary
Ls
T P Tau
Dr 32m to 61/0654 · el+194m · 15817m · toward Sandy Point Beach, APXS thermal
17 Feb 09:44 1612 Cm
characterization
318.9
18 Feb 10:24 1613 C
319.5
19 Feb 11:03 1614 Cm
A
In-situ Spider Lake, MAHLI Chain Lakes & REMS UV
320.1
0.93
20 Feb 11:43 1615
APXS cal, drill diagnostics, MAHLI compression tests
320.7
0.92
21 Feb 12:23 1616 m
Dr 0m to 61/0930 · el+194m · 15817m · toward Sandy Point Beach
321.2 201 890
22 Feb 13:02 1617 CM
Dr 20m to 61/0938 · el+194m · 15837m · toward Sandy Point Beach, drill diagnostics
321.8 203 881 0.93
23 Feb 13:42 1618 CM AW In-situ Tomhegan & Waweig, MAHLI Seeboomook, Cookson, wheels 322.4 203 886 0.97
MAHLI dust cove
24 Feb 14:21 1619 cM
drill diagnostics, MAHLI dust cover open fault
323.0 201 888 0.89
25 Feb 15:01 1620 CM
MAHLI diagnostics
323.6 203 886 0.85
r
26 Feb 15:40 1621 Cm
SAM electrical baseline test
324.1 202 890 1.04
recove 27 Feb 16:20 1622 m
APXS thermal characterization
324.7 204 890
ry
28 Feb 17:00 1623 Cm
W
MAHLI and drill diagnostics, MAHLI wheels (occluded by cover)
325.3 205 884
01 Mar 17:39 1624 M
APXS thermal characterization
325.9 206 888
02 Mar 18:19 1625 CM
MAHLI diagnostics, Mastcam video MAHLI cover, APXS thermal characterization
326.4 203 891 1.13
03 Mar 18:58 1626 CM
APXS thermal characterization, HRS maintenance
327.0 203 889 1.18
04 Mar 19:38 1627 CM
MAHLI diagnostics, Mastcam video MAHLI cover
327.6
888
Dr 25m to 61/1146 · el+195m · 15862m · toward Southern Cove (dune stop 3), MAHLI
05 Mar 20:18 1628 CM
W
diagnostics, MAHLI wheel
328.1 203 888 1.06
Stop 3 06 Mar 20:57 1629 CM
APXS thermal characterization
328.7 205 883 1.17
(Sou
Dr 41m to 61/1338 · el+196m · 15903m · toward Southern Cove after in-situ Sangerville, drill 07 Mar 21:37 1630 Cm
A
329.3 206 886
thern Co
diagnostics
08 Mar 22:16 1631 Cm
329.9 206 883
ve)
09 Mar 22:56 1632 Cm
A
Dr 29m to 61/1656 · el+197m · 15932m · toward Southern Cove after in-situ Spring Point, MAHLI 330.4 202 881
cal, drill diagnostics
10 Mar 23:36 1633 C
331.0 202 878
12 Mar 00:15 1634 CM
A
In-situ Canada Falls
331.5 202 881
13 Mar 00:55 1635 m
Dr 29m to 61/1914 · el+197m · 15961m · toward Southern Cove
332.1 204 879 1.20
14 Mar 01:34 1636 Cm
Dr 7m to 61/2154 · el+196m · 15967m · to Southern Cove
332.7 204 880
15 Mar 02:14 1637 CM
A
In-situ Spragueville & Ripogenus, MAHLI Shin Brook; drill diag
333.2 203 883 1.09
16 Mar 02:53 1638 Cm
A
In-situ Ash Island & Greenvale Cove, MAHLI Ripogenus & Spragueville, Ash Island; drill 333.8 202 881
diagnostics
Dr 31m to 61/2238 · el+198m · 15998m · toward Ogunquit Beach (dune stop 4) after MAHLI
17 Mar 03:33 1639 Cm
Greenvale Cove & Holmes Hole; drill diagnostics
334.3 203 875
Drive to Ogun 18 Mar 04:13 1640 C A In-situ Junk of Pork Island, MAHLI Uncle Steve's Point; drill thermal characterization 334.9 201 875 1.05
19 Mar 04:52 1641 CM
A
Dr 1m to 61/2478 · el+4501m · 16000m · for full MAHLI wheel after APXS Uncle Steve's Point; 335.5 203 875
qu
drill diagnostics
it Be
Dr 27m to 61/2502 · el+200m · 16027m · toward Ogunquit Beach, thermal characterization of
ac
20 Mar 05:32 1642 m
h
RPAM
336.0 203 873
21 Mar 06:11 1643 Cm
Dr 41m to 61/2746 · el+200m · 16067m · toward Ogunquit Beach
336.6 202 876
22 Mar 06:51 1644 Cm
A
In-situ The Hop, MAHLI The Horns; drill diagnostics
337.1 200 879
23 Mar 07:31 1645 CM
Dr 21m to 61/3082 · el+201m · 16088m · toward Ogunquit Beach; drill diagnostics
337.7 199 877 1.14
24 Mar 08:10 1646 CM
Dr 31m to 61/3232 · el+201m · 16119m · toward Ogunquit Beach, SAM electrical baseline test
338.2 201 872
25 Mar 08:50 1647 CM
A
In-situ Halftide Ledge
338.8 203 872
26 Mar 09:29 1648 M
Dr 10m to 62/0006 · el+201m · 16128m · to Ogunquit Beach, drill diagnostics
339.3 202 869
About the Author
Emily Lakdawalla is Senior Editor and Planetary Evangelist for The Planetary Society.
She is an internationally known science communicator who shares her passion for solar
system exploration by writing and editing The Planetary Society’s blogs at planetary.org/
blog, speaking to classrooms, sharing space photos and science explanations on twitter.
com/elakdawalla, and developing other space science education projects.
Emily holds a Master of Science degree in planetary geology from Brown University,
where she studied tectonics on Venus and was among the first to develop Geographic
Information Systems off of Earth. She began writing about space exploration for the pub-
lic when Cassini arrived at Saturn in 2004, and has since covered the science and opera-
tions of robotic missions across the solar system, from MESSENGER at Mercury to
Rosetta at 67P/Churyumov-Gerasimenko and New Horizons at Pluto. Emily has been an
active su
pporter of the international community of space image processing enthusiasts as
Administrator of the forum UnmannedSpaceflight.com since 2005. She is also a contribut-ing editor to Sky & Telescope magazine.
Emily has been recognized by the space science community for her work in promoting
space exploration to the public. She was awarded the 2011 Jonathan Eberhart Planetary
Sciences Journalism Award from the Division for Planetary Sciences of the American
Astronomical Society for her blog entry about the Phoebe ring of Saturn. Asteroid 274860
was formally named "Emilylakdawalla" by the International Astronomical Union on July 12, 2014. She received an honorary doctorate from The Open University in 2017.
She is currently working on the sequel to this book, Curiosity and Its Science Mission: A Mars Rover Goes to Work. She resides in Los Angeles with her husband (who is not a planetary scientist) and two daughters.
© Springer International Publishing AG, part of Springer Nature 2018
392
E. Lakdawalla, The Design and Engineering of Curiosity, Springer Praxis Books,
https://doi.org/10.1007/978-3-319-68146-7
Index
A
D
Aeolis Mons, 119
Deimos, 251, 354, 361, 362, 371, 376
aerogel, 151
derivatization, 336, 343, 345, 346, 372, 389
animation 46
descope, 28–31, 239, 267
announcement of opportunity, 10, 13
Dingo Gap, 119, 129, 130, 156, 365, 366
anomaly, 72, 78, 116, 121, 125, 126, 129, 133, 146,
dream mode, 147, 148
148, 162, 195, 198, 206, 208, 209, 229, 250,
dry-lubricated motors, 16, 25
271, 280, 302, 308, 326, 354, 358, 359, 364,
369, 374, 381, 382, 385, 389, 390
argon, 308, 337–340, 343
E
Atlas V, 19, 48, 51, 53, 57–59
epithermal, 280–282
autonav, 127, 176, 230, 232, 354
ExoMars, 39, 157, 159, 160
autonomous navigation, 126, 147, 228–230, 232
F
B
Freon, 62, 66, 67, 149, 151
Bagnold dunes, 119, 133, 255, 306, 378–380
battle short, 50, 195, 356, 374
Bayer, 236, 240–241, 243, 258
G
blind drive, 124, 127, 231, 232
guarded motion, 230, 232
guided entry, 3, 16, 22, 27, 71, 78, 83, 86
C
calcium sulfate, 250, 304, 307, 320, 326
H
clast survey, 250, 255, 288
habitability, 8, 9, 11, 21, 350
clay, 119, 301, 320, 322, 325, 326, 344
heater tables, 152, 153
commissioning activity phase, 121
hematite, 4, 119, 133, 305, 319, 326
complexity, 9, 16, 17, 24, 29, 46, 110, 114, 115,
HiRISE, 18, 29, 69, 76, 77, 93, 94, 97, 104–106,
154, 242, 246, 249, 298, 343
165, 176, 252
conjunction, 126, 133, 160, 161, 213, 228, 243,
273, 280, 307, 359, 376, 377
CONTOUR, 329
J
cosmic ray, 276, 280–282, 284, 324
JPEG, 242–246
curium, 311
JunoCam, 252
© Springer International Publishing AG, part of Springer Nature 2018
393
E. Lakdawalla, The Design and Engineering of Curiosity, Springer Praxis Books,
https://doi.org/10.1007/978-3-319-68146-7
394 Index
K
plutonium, 7, 24, 39, 138, 139, 144, 280
Kimberley, 119, 129–131, 147, 364–367
portion plus, 198, 201
L
R
local mean solar time, 112, 113
recurring slope lineae, 50
local true solar time, 112, 113, 153, 255
restricted sol, 116–118, 161, 228, 248, 285
lockup, 318
runout, 353, 355, 357–359, 366–374, 376–381,
383, 389, 390
M
Maggie, 179
S
magic cylinder, 187, 189
Scarecrow, 31, 32, 163, 181
Marias Pass, 119, 132, 161, 285, 376, 377
shrinkwrap stereo, 249
Mars Express, 10, 15, 22, 47, 72, 120, 122, 157,
sidewalk mode, 131, 253, 255, 368–370
159, 160, 374
Siding Spring, 251, 370, 371
Mars Reconnaissance Orbiter, 1, 15, 17, 18, 22,
sky crane, 10, 16, 41, 69, 96
29, 41, 47, 57, 66, 68, 69, 71, 76, 78, 79,
slide sol, 116–118
93, 101, 102, 104, 115, 119, 122, 155,
soft short, 127, 132, 144, 145, 364, 383, 387
157–162, 165, 224, 252
soliday, 116–118
Mars Smart Lander, 4–7, 18, 25
special region, 23, 24, 50
Mars time, 110, 114–116
supratactical, 114, 115, 343
microbes, 9, 23, 24, 49
surge sol, 117, 118, 128, 131, 367
Morse code, 169, 170
MTBSTFA, 334, 335, 341, 343
T
terrain mesh, 115, 229, 231, 232, 247
O
thermo-electric cooler, 41, 295, 300
Odyssey, 1, 8, 13, 15, 17, 18, 22, 24, 57, 66–69,
TMAH, 334, 335
71, 72, 78, 79, 83, 93, 101, 102, 115, 120,
traction control, 148, 177
155, 157–159, 162, 176, 224, 280
traversability, 41, 127, 232
olivine, 319, 326
tridymite, 319, 326, 327
P
V
Pahrump Hills, 119, 131, 132, 209, 211, 213, 253,
Vehicle System Testbed, 179, 180
255, 269, 270, 290, 304, 305, 370, 375
Vera Rubin Ridge, 119, 133, 161, 325, 344, 350, 351
Peace Vallis, 118, 119, 121, 306
visodom, 230, 232, 354
Philae, 298
visual odometry, 124, 147, 224, 228, 230, 232
Phobos, 251, 298, 354, 355, 361, 362, 368–370,
376, 377
Phoenix, 30, 31, 33, 34, 40, 158, 213, 217,
Z
252, 286
Zabriskie plateau, 131
planetary protection, 22–24, 47–50, 193
z-stack, 147, 260, 261, 267
Document Outline
Contents
Dedication
Foreword
Acknowledgments
Preface
1: Mars Science Laboratory 1.1 INTRODUCTION
1.2 DESIGNING A BIGGER LANDER (2000–2003) 1.2.1 “Rover on a Rope”
1.2.2 Mars Smart Lander
1.2.3 Nuclear power
1.3 BECOMING MARS SCIENCE LABORATORY (2003–2004) 1.3.1 Defining the science objectives
1.3.2 The mission concept matures
1.3.3 Instrument selection
1.4 PRELIMINARY DESIGN (2005–2006) 1.4.1 Technology development
1.4.2 Shifting design, early 2006
1.4.3 First real cost estimate
1.4.4 Where to send the mission?
1.4.5 Plans for planetary protection
1.5 THE COST OF COMPLEXITY (2007–2008) 1.5.1 Sample handling restart
1.5.2 Motor problems
1.5.3 Heat shield failure
1.5.4 Critical Design Review
1.5.5 Stern descopes
1.5.6 Second site selection workshop
1.5.7 MARDI wheeling and dealing
1.5.8 Mastcam dezoomed
1.5.9 Scarecrow’s debut
1.5.10 Budget balloons
1.5.11 Phoenix descends
1.5.12 Assembly begins
1.5.13 Avionics problems
1.6 A TWO-YEAR RESPITE (2009–2010) 1.6.1 Launch
delay
1.6.2 Becoming Curiosity
1.6.3 Problem solving
1.7 FINAL PREPARATIONS (2010–2011) 1.7.1 ATLO, again
1.7.2 Going to Gale
1.7.3 Journey to Florida
1.7.4 Planetary protection jeopardy
1.7.5 Final assembly
1.8 REFERENCES
2: Getting to Mars 2.1 LAUNCH
2.2 CRUISE 2.2.1 The cruise stage
2.2.2 Cruise phase
2.2.3 Approaching Mars
2.3 EDL: ENTRY, DESCENT, AND LANDING 2.3.1 Telecommunications during landing
2.3.2 The aeroshell and MEDLI
2.3.3 Final approach
2.3.4 Entry: 0 to 259 seconds
2.3.5 The parachute
2.3.6 The descent stage
2.3.7 Descent under parachute: 259 to 375 seconds
2.3.8 Powered descent: 378 to 412 seconds
2.3.9 The lander
2.3.10 Sky crane and landing: 412 to 432 seconds
2.4 CURIOSITY ON MARS
2.5 EPILOGUE: VIEWS OF THE CRUISE HARDWARE
2.6 REFERENCES
3: Mars Operations 3.1 INTRODUCTION
3.2 MARS’ CALENDAR 3.2.1 Mars sols and seasons
3.2.2 Mars solar time
3.2.3 Rover timekeeping
3.3 STRATEGIC, SUPRATACTICAL, AND TACTICAL PLANNING
3.4 TACTICAL PLANNING PROCESS 3.4.1 Mars time operations
3.4.2 Slide sols, restricted sols, and solidays
3.4.3 Weekends, holidays, and surge sols
3.5 MISSION SUMMARY 3.5.1 Site context
3.5.2 Yellowknife Bay campaign and the sol 200 anomaly
3.5.3 The Bradbury traverse
3.5.4 Mission to Mount Sharp
3.6 REFERENCES
4: How the Rover Works 4.1 INTRODUCTION
4.2 POWER SYSTEM AND MMRTG 4.2.1 How the MMRTG works
4.2.2 Performance on Mars
4.2.3 Anomalies
4.3 AVIONICS 4.3.1 The sol 200 anomaly
4.3.2 Flight software 4.3.2.1 Flight software version R10.5.8 (sol 8)
4.3.2.2 Flight software version R11.0.4 (sol 484)
4.3.2.3 Flight software version R11.0.5 (sol 772)
4.3.2.4 Flight software version R12.0.3 (sol 879)
4.4 THERMAL CONTROL 4.4.1 Rover avionics mounting panel
4.4.2 Sensors and survival heaters
4.4.3 Rover heat rejection system
4.4.4 Heater tables
4.4.5 Performance on Mars
4.5 TELECOMMUNICATION 4.5.1 The Deep Space Network
4.5.2 Curiosity hardware 4.5.2.1 High-gain antenna