Emily Lakdawalla

Home > Other > Emily Lakdawalla > Page 57
Emily Lakdawalla Page 57

by The Design


  09 Feb 04:27 1604 cM

  Matagamon, McKenny

  314.2 202 898

  Ireson

  10 Feb 05:07 1605 Cm

  Dr 22m to 61/0006 · el+187m · 15725m · toward Ireson Hill after MAHLI Cary's Mills

  314.8 201 887

  Hill

  11 Feb 05:47 1606 Cm

  A

  In-situ Quoddy & Pogy, APXS thermal characterization

  315.4 202 896

  12 Feb 06:26 1607 Cm

  drill diagnostics, thermal characterization of RPAM

  316.0 203 887 0.91

  13 Feb 07:06 1608 CM

  Dr 9m to 61/0162 · el+187m · 15735m · to Ireson Hill, drill diagnostics, MAHLI compression tests 316.6 204 889 1.04

  14 Feb 07:45 1609 CM

  A

  In-situ Perry & Spurwink, MAHLI Passagassawakeag

  317.2 202 891

  15 Feb 08:25 1610 CM

  Dr 26m to 61/0258 · el+189m · 15761m · toward Sandy Point Beach (dune stop 2), drill diag

  317.7 203 882 1.20

  ndy

  (Sa 16 Feb 09:05 1611 cm

  Dr 23m to 61/0462 · el+191m · 15785m · toward Sandy Point Beach after MAHLI Patch Mountain 318.3

  Appendix: Curiosity Activity Summary 391

  Area Noon UTC

  Sol RS Arm Activity Summary

  Ls

  T P Tau

  Dr 32m to 61/0654 · el+194m · 15817m · toward Sandy Point Beach, APXS thermal

  17 Feb 09:44 1612 Cm

  characterization

  318.9

  18 Feb 10:24 1613 C

  319.5

  19 Feb 11:03 1614 Cm

  A

  In-situ Spider Lake, MAHLI Chain Lakes & REMS UV

  320.1

  0.93

  20 Feb 11:43 1615

  APXS cal, drill diagnostics, MAHLI compression tests

  320.7

  0.92

  21 Feb 12:23 1616 m

  Dr 0m to 61/0930 · el+194m · 15817m · toward Sandy Point Beach

  321.2 201 890

  22 Feb 13:02 1617 CM

  Dr 20m to 61/0938 · el+194m · 15837m · toward Sandy Point Beach, drill diagnostics

  321.8 203 881 0.93

  23 Feb 13:42 1618 CM AW In-situ Tomhegan & Waweig, MAHLI Seeboomook, Cookson, wheels 322.4 203 886 0.97

  MAHLI dust cove

  24 Feb 14:21 1619 cM

  drill diagnostics, MAHLI dust cover open fault

  323.0 201 888 0.89

  25 Feb 15:01 1620 CM

  MAHLI diagnostics

  323.6 203 886 0.85

  r

  26 Feb 15:40 1621 Cm

  SAM electrical baseline test

  324.1 202 890 1.04

  recove 27 Feb 16:20 1622 m

  APXS thermal characterization

  324.7 204 890

  ry

  28 Feb 17:00 1623 Cm

  W

  MAHLI and drill diagnostics, MAHLI wheels (occluded by cover)

  325.3 205 884

  01 Mar 17:39 1624 M

  APXS thermal characterization

  325.9 206 888

  02 Mar 18:19 1625 CM

  MAHLI diagnostics, Mastcam video MAHLI cover, APXS thermal characterization

  326.4 203 891 1.13

  03 Mar 18:58 1626 CM

  APXS thermal characterization, HRS maintenance

  327.0 203 889 1.18

  04 Mar 19:38 1627 CM

  MAHLI diagnostics, Mastcam video MAHLI cover

  327.6

  888

  Dr 25m to 61/1146 · el+195m · 15862m · toward Southern Cove (dune stop 3), MAHLI

  05 Mar 20:18 1628 CM

  W

  diagnostics, MAHLI wheel

  328.1 203 888 1.06

  Stop 3 06 Mar 20:57 1629 CM

  APXS thermal characterization

  328.7 205 883 1.17

  (Sou

  Dr 41m to 61/1338 · el+196m · 15903m · toward Southern Cove after in-situ Sangerville, drill 07 Mar 21:37 1630 Cm

  A

  329.3 206 886

  thern Co

  diagnostics

  08 Mar 22:16 1631 Cm

  329.9 206 883

  ve)

  09 Mar 22:56 1632 Cm

  A

  Dr 29m to 61/1656 · el+197m · 15932m · toward Southern Cove after in-situ Spring Point, MAHLI 330.4 202 881

  cal, drill diagnostics

  10 Mar 23:36 1633 C

  331.0 202 878

  12 Mar 00:15 1634 CM

  A

  In-situ Canada Falls

  331.5 202 881

  13 Mar 00:55 1635 m

  Dr 29m to 61/1914 · el+197m · 15961m · toward Southern Cove

  332.1 204 879 1.20

  14 Mar 01:34 1636 Cm

  Dr 7m to 61/2154 · el+196m · 15967m · to Southern Cove

  332.7 204 880

  15 Mar 02:14 1637 CM

  A

  In-situ Spragueville & Ripogenus, MAHLI Shin Brook; drill diag

  333.2 203 883 1.09

  16 Mar 02:53 1638 Cm

  A

  In-situ Ash Island & Greenvale Cove, MAHLI Ripogenus & Spragueville, Ash Island; drill 333.8 202 881

  diagnostics

  Dr 31m to 61/2238 · el+198m · 15998m · toward Ogunquit Beach (dune stop 4) after MAHLI

  17 Mar 03:33 1639 Cm

  Greenvale Cove & Holmes Hole; drill diagnostics

  334.3 203 875

  Drive to Ogun 18 Mar 04:13 1640 C A In-situ Junk of Pork Island, MAHLI Uncle Steve's Point; drill thermal characterization 334.9 201 875 1.05

  19 Mar 04:52 1641 CM

  A

  Dr 1m to 61/2478 · el+4501m · 16000m · for full MAHLI wheel after APXS Uncle Steve's Point; 335.5 203 875

  qu

  drill diagnostics

  it Be

  Dr 27m to 61/2502 · el+200m · 16027m · toward Ogunquit Beach, thermal characterization of

  ac

  20 Mar 05:32 1642 m

  h

  RPAM

  336.0 203 873

  21 Mar 06:11 1643 Cm

  Dr 41m to 61/2746 · el+200m · 16067m · toward Ogunquit Beach

  336.6 202 876

  22 Mar 06:51 1644 Cm

  A

  In-situ The Hop, MAHLI The Horns; drill diagnostics

  337.1 200 879

  23 Mar 07:31 1645 CM

  Dr 21m to 61/3082 · el+201m · 16088m · toward Ogunquit Beach; drill diagnostics

  337.7 199 877 1.14

  24 Mar 08:10 1646 CM

  Dr 31m to 61/3232 · el+201m · 16119m · toward Ogunquit Beach, SAM electrical baseline test

  338.2 201 872

  25 Mar 08:50 1647 CM

  A

  In-situ Halftide Ledge

  338.8 203 872

  26 Mar 09:29 1648 M

  Dr 10m to 62/0006 · el+201m · 16128m · to Ogunquit Beach, drill diagnostics

  339.3 202 869

  About the Author

  Emily Lakdawalla is Senior Editor and Planetary Evangelist for The Planetary Society.

  She is an internationally known science communicator who shares her passion for solar

  system exploration by writing and editing The Planetary Society’s blogs at planetary.org/

  blog, speaking to classrooms, sharing space photos and science explanations on twitter.

  com/elakdawalla, and developing other space science education projects.

  Emily holds a Master of Science degree in planetary geology from Brown University,

  where she studied tectonics on Venus and was among the first to develop Geographic

  Information Systems off of Earth. She began writing about space exploration for the pub-

  lic when Cassini arrived at Saturn in 2004, and has since covered the science and opera-

  tions of robotic missions across the solar system, from MESSENGER at Mercury to

  Rosetta at 67P/Churyumov-Gerasimenko and New Horizons at Pluto. Emily has been an

  active su
pporter of the international community of space image processing enthusiasts as

  Administrator of the forum UnmannedSpaceflight.com since 2005. She is also a contribut-ing editor to Sky & Telescope magazine.

  Emily has been recognized by the space science community for her work in promoting

  space exploration to the public. She was awarded the 2011 Jonathan Eberhart Planetary

  Sciences Journalism Award from the Division for Planetary Sciences of the American

  Astronomical Society for her blog entry about the Phoebe ring of Saturn. Asteroid 274860

  was formally named "Emilylakdawalla" by the International Astronomical Union on July 12, 2014. She received an honorary doctorate from The Open University in 2017.

  She is currently working on the sequel to this book, Curiosity and Its Science Mission: A Mars Rover Goes to Work. She resides in Los Angeles with her husband (who is not a planetary scientist) and two daughters.

  © Springer International Publishing AG, part of Springer Nature 2018

  392

  E. Lakdawalla, The Design and Engineering of Curiosity, Springer Praxis Books,

  https://doi.org/10.1007/978-3-319-68146-7

  Index

  A

  D

  Aeolis Mons, 119

  Deimos, 251, 354, 361, 362, 371, 376

  aerogel, 151

  derivatization, 336, 343, 345, 346, 372, 389

  animation 46

  descope, 28–31, 239, 267

  announcement of opportunity, 10, 13

  Dingo Gap, 119, 129, 130, 156, 365, 366

  anomaly, 72, 78, 116, 121, 125, 126, 129, 133, 146,

  dream mode, 147, 148

  148, 162, 195, 198, 206, 208, 209, 229, 250,

  dry-lubricated motors, 16, 25

  271, 280, 302, 308, 326, 354, 358, 359, 364,

  369, 374, 381, 382, 385, 389, 390

  argon, 308, 337–340, 343

  E

  Atlas V, 19, 48, 51, 53, 57–59

  epithermal, 280–282

  autonav, 127, 176, 230, 232, 354

  ExoMars, 39, 157, 159, 160

  autonomous navigation, 126, 147, 228–230, 232

  F

  B

  Freon, 62, 66, 67, 149, 151

  Bagnold dunes, 119, 133, 255, 306, 378–380

  battle short, 50, 195, 356, 374

  Bayer, 236, 240–241, 243, 258

  G

  blind drive, 124, 127, 231, 232

  guarded motion, 230, 232

  guided entry, 3, 16, 22, 27, 71, 78, 83, 86

  C

  calcium sulfate, 250, 304, 307, 320, 326

  H

  clast survey, 250, 255, 288

  habitability, 8, 9, 11, 21, 350

  clay, 119, 301, 320, 322, 325, 326, 344

  heater tables, 152, 153

  commissioning activity phase, 121

  hematite, 4, 119, 133, 305, 319, 326

  complexity, 9, 16, 17, 24, 29, 46, 110, 114, 115,

  HiRISE, 18, 29, 69, 76, 77, 93, 94, 97, 104–106,

  154, 242, 246, 249, 298, 343

  165, 176, 252

  conjunction, 126, 133, 160, 161, 213, 228, 243,

  273, 280, 307, 359, 376, 377

  CONTOUR, 329

  J

  cosmic ray, 276, 280–282, 284, 324

  JPEG, 242–246

  curium, 311

  JunoCam, 252

  © Springer International Publishing AG, part of Springer Nature 2018

  393

  E. Lakdawalla, The Design and Engineering of Curiosity, Springer Praxis Books,

  https://doi.org/10.1007/978-3-319-68146-7

  394 Index

  K

  plutonium, 7, 24, 39, 138, 139, 144, 280

  Kimberley, 119, 129–131, 147, 364–367

  portion plus, 198, 201

  L

  R

  local mean solar time, 112, 113

  recurring slope lineae, 50

  local true solar time, 112, 113, 153, 255

  restricted sol, 116–118, 161, 228, 248, 285

  lockup, 318

  runout, 353, 355, 357–359, 366–374, 376–381,

  383, 389, 390

  M

  Maggie, 179

  S

  magic cylinder, 187, 189

  Scarecrow, 31, 32, 163, 181

  Marias Pass, 119, 132, 161, 285, 376, 377

  shrinkwrap stereo, 249

  Mars Express, 10, 15, 22, 47, 72, 120, 122, 157,

  sidewalk mode, 131, 253, 255, 368–370

  159, 160, 374

  Siding Spring, 251, 370, 371

  Mars Reconnaissance Orbiter, 1, 15, 17, 18, 22,

  sky crane, 10, 16, 41, 69, 96

  29, 41, 47, 57, 66, 68, 69, 71, 76, 78, 79,

  slide sol, 116–118

  93, 101, 102, 104, 115, 119, 122, 155,

  soft short, 127, 132, 144, 145, 364, 383, 387

  157–162, 165, 224, 252

  soliday, 116–118

  Mars Smart Lander, 4–7, 18, 25

  special region, 23, 24, 50

  Mars time, 110, 114–116

  supratactical, 114, 115, 343

  microbes, 9, 23, 24, 49

  surge sol, 117, 118, 128, 131, 367

  Morse code, 169, 170

  MTBSTFA, 334, 335, 341, 343

  T

  terrain mesh, 115, 229, 231, 232, 247

  O

  thermo-electric cooler, 41, 295, 300

  Odyssey, 1, 8, 13, 15, 17, 18, 22, 24, 57, 66–69,

  TMAH, 334, 335

  71, 72, 78, 79, 83, 93, 101, 102, 115, 120,

  traction control, 148, 177

  155, 157–159, 162, 176, 224, 280

  traversability, 41, 127, 232

  olivine, 319, 326

  tridymite, 319, 326, 327

  P

  V

  Pahrump Hills, 119, 131, 132, 209, 211, 213, 253,

  Vehicle System Testbed, 179, 180

  255, 269, 270, 290, 304, 305, 370, 375

  Vera Rubin Ridge, 119, 133, 161, 325, 344, 350, 351

  Peace Vallis, 118, 119, 121, 306

  visodom, 230, 232, 354

  Philae, 298

  visual odometry, 124, 147, 224, 228, 230, 232

  Phobos, 251, 298, 354, 355, 361, 362, 368–370,

  376, 377

  Phoenix, 30, 31, 33, 34, 40, 158, 213, 217,

  Z

  252, 286

  Zabriskie plateau, 131

  planetary protection, 22–24, 47–50, 193

  z-stack, 147, 260, 261, 267

  Document Outline

  Contents

  Dedication

  Foreword

  Acknowledgments

  Preface

  1: Mars Science Laboratory 1.1 INTRODUCTION

  1.2 DESIGNING A BIGGER LANDER (2000–2003) 1.2.1 “Rover on a Rope”

  1.2.2 Mars Smart Lander

  1.2.3 Nuclear power

  1.3 BECOMING MARS SCIENCE LABORATORY (2003–2004) 1.3.1 Defining the science objectives

  1.3.2 The mission concept matures

  1.3.3 Instrument selection

  1.4 PRELIMINARY DESIGN (2005–2006) 1.4.1 Technology development

  1.4.2 Shifting design, early 2006

  1.4.3 First real cost estimate

  1.4.4 Where to send the mission?

  1.4.5 Plans for planetary protection

  1.5 THE COST OF COMPLEXITY (2007–2008) 1.5.1 Sample handling restart

  1.5.2 Motor problems

  1.5.3 Heat shield failure

  1.5.4 Critical Design Review

  1.5.5 Stern descopes

  1.5.6 Second site selection workshop

  1.5.7 MARDI wheeling and dealing

  1.5.8 Mastcam dezoomed

  1.5.9 Scarecrow’s debut

  1.5.10 Budget balloons

  1.5.11 Phoenix descends

  1.5.12 Assembly begins

  1.5.13 Avionics problems

  1.6 A TWO-YEAR RESPITE (2009–2010) 1.6.1 Launch
delay

  1.6.2 Becoming Curiosity

  1.6.3 Problem solving

  1.7 FINAL PREPARATIONS (2010–2011) 1.7.1 ATLO, again

  1.7.2 Going to Gale

  1.7.3 Journey to Florida

  1.7.4 Planetary protection jeopardy

  1.7.5 Final assembly

  1.8 REFERENCES

  2: Getting to Mars 2.1 LAUNCH

  2.2 CRUISE 2.2.1 The cruise stage

  2.2.2 Cruise phase

  2.2.3 Approaching Mars

  2.3 EDL: ENTRY, DESCENT, AND LANDING 2.3.1 Telecommunications during landing

  2.3.2 The aeroshell and MEDLI

  2.3.3 Final approach

  2.3.4 Entry: 0 to 259 seconds

  2.3.5 The parachute

  2.3.6 The descent stage

  2.3.7 Descent under parachute: 259 to 375 seconds

  2.3.8 Powered descent: 378 to 412 seconds

  2.3.9 The lander

  2.3.10 Sky crane and landing: 412 to 432 seconds

  2.4 CURIOSITY ON MARS

  2.5 EPILOGUE: VIEWS OF THE CRUISE HARDWARE

  2.6 REFERENCES

  3: Mars Operations 3.1 INTRODUCTION

  3.2 MARS’ CALENDAR 3.2.1 Mars sols and seasons

  3.2.2 Mars solar time

  3.2.3 Rover timekeeping

  3.3 STRATEGIC, SUPRATACTICAL, AND TACTICAL PLANNING

  3.4 TACTICAL PLANNING PROCESS 3.4.1 Mars time operations

  3.4.2 Slide sols, restricted sols, and solidays

  3.4.3 Weekends, holidays, and surge sols

  3.5 MISSION SUMMARY 3.5.1 Site context

  3.5.2 Yellowknife Bay campaign and the sol 200 anomaly

  3.5.3 The Bradbury traverse

  3.5.4 Mission to Mount Sharp

  3.6 REFERENCES

  4: How the Rover Works 4.1 INTRODUCTION

  4.2 POWER SYSTEM AND MMRTG 4.2.1 How the MMRTG works

  4.2.2 Performance on Mars

  4.2.3 Anomalies

  4.3 AVIONICS 4.3.1 The sol 200 anomaly

  4.3.2 Flight software 4.3.2.1 Flight software version R10.5.8 (sol 8)

  4.3.2.2 Flight software version R11.0.4 (sol 484)

  4.3.2.3 Flight software version R11.0.5 (sol 772)

  4.3.2.4 Flight software version R12.0.3 (sol 879)

  4.4 THERMAL CONTROL 4.4.1 Rover avionics mounting panel

  4.4.2 Sensors and survival heaters

  4.4.3 Rover heat rejection system

  4.4.4 Heater tables

  4.4.5 Performance on Mars

  4.5 TELECOMMUNICATION 4.5.1 The Deep Space Network

  4.5.2 Curiosity hardware 4.5.2.1 High-gain antenna

 

‹ Prev