Evolution is a fact. Beyond reasonable doubt, beyond serious doubt, beyond sane, informed, intelligent doubt, beyond doubt evolution is a fact. The evidence for evolution is at least as strong as the evidence for the Holocaust, even allowing for eye witnesses to the Holocaust. It is the plain truth that we are cousins of chimpanzees, somewhat more distant cousins of monkeys, more distant cousins still of aardvarks and manatees, yet more distant cousins of bananas and turnips . . . continue the list as long as desired. That didn’t have to be true. It is not self-evidently, tautologically, obviously true, and there was a time when most people, even educated people, thought it wasn’t. It didn’t have to be true, but it is. We know this because a rising flood of evidence supports it. Evolution is a fact, and this book will demonstrate it. No reputable scientist disputes it, and no unbiased reader will close the book doubting it.
Why, then, do we speak of ‘Darwin’s theory of evolution’, thereby, it seems, giving spurious comfort to those of a creationist persuasion – the history-deniers, the 40-percenters – who think the word ‘theory’ is a concession, handing them some kind of gift or victory?
WHAT IS A THEORY? WHAT IS A FACT?
Only a theory? Let’s look at what ‘theory’ means. The Oxford English Dictionary gives two meanings (actually more, but these are the two that matter here).
Theory, Sense 1: A scheme or system of ideas or statements held as an explanation or account of a group of facts or phenomena; a hypothesis that has been confirmed or established by observation or experiment, and is propounded or accepted as accounting for the known facts; a statement of what are held to be the general laws, principles, or causes of something known or observed.
Theory, Sense 2: A hypothesis proposed as an explanation; hence, a mere hypothesis, speculation, conjecture; an idea or set of ideas about something; an individual view or notion.
Obviously the two meanings are quite different from one another. And the short answer to my question about the theory of evolution is that the scientists are using Sense 1, while the creationists are – perhaps mischievously, perhaps sincerely – opting for Sense 2. A good example of Sense 1 is the Heliocentric Theory of the Solar System, the theory that Earth and the other planets orbit the sun. Evolution fits Sense 1 perfectly. Darwin’s theory of evolution is indeed a ‘scheme or system of ideas or statements’. It does account for a massive ‘group of facts or phenomena’. It is ‘a hypothesis that has been confirmed or established by observation or experiment’ and, by generally informed consent, it is ‘a statement of what are held to be the general laws, principles, or causes of something known or observed’. It is certainly very far from ‘a mere hypothesis, speculation, conjecture’. Scientists and creationists are understanding the word ‘theory’ in two very different senses. Evolution is a theory in the same sense as the heliocentric theory. In neither case should the word ‘only’ be used, as in ‘only a theory’.
As for the claim that evolution has never been ‘proved’, proof is a notion that scientists have been intimidated into mistrusting. Influential philosophers tell us we can’t prove anything in science. Mathematicians can prove things – according to one strict view, they are the only people who can – but the best that scientists can do is fail to disprove things while pointing to how hard they tried. Even the undisputed theory that the moon is smaller than the sun cannot, to the satisfaction of a certain kind of philosopher, be proved in the way that, for example, the Pythagorean Theorem can be proved. But massive accretions of evidence support it so strongly that to deny it the status of ‘fact’ seems ridiculous to all but pedants. The same is true of evolution. Evolution is a fact in the same sense as it is a fact that Paris is in the Northern Hemisphere. Though logic-choppers rule the town,* some theories are beyond sensible doubt, and we call them facts. The more energetically and thoroughly you try to disprove a theory, if it survives the assault, the more closely it approaches what common sense happily calls a fact.
I could carry on using ‘Theory Sense 1’ and ‘Theory Sense 2’ but numbers are unmemorable. I need substitute words. We already have a good word for ‘Theory Sense 2’. It is ‘hypothesis’. Everybody understands that a hypothesis is a tentative idea awaiting confirmation (or falsification), and it is precisely this tentativeness that evolution has now shed, although it was still burdened with it in Darwin’s time. ‘Theory Sense 1’ is harder. It would be nice simply to go on using ‘theory’, as though ‘Sense 2’ didn’t exist. Indeed, a good case could be made that Sense 2 shouldn’t exist, because it is confusing and unnecessary, given that we have ‘hypothesis’. Unfortunately Sense 2 of ‘theory’ is in common use and we can’t by fiat ban it. I am therefore going to take the considerable, but just forgivable, liberty of borrowing from mathematics the word ‘theorem’ for Sense 1. It is actually a mis-borrowing, as we shall see, but I think the risk of confusion is outweighed by the benefits. As a gesture of appeasement towards affronted mathematicians, I am going to change my spelling to ‘theorum’.* First, let me explain the strict mathematical usage of theorem, while at the same time clarifying my earlier statement that, strictly speaking, only mathematicians are licensed to prove anything (lawyers aren’t, despite well-remunerated pretensions).
To a mathematician, a proof is a logical demonstration that a conclusion necessarily follows from axioms that are assumed. Pythagoras’ Theorem is necessarily true, provided only that we assume Euclidean axioms, such as the axiom that parallel straight lines never meet. You are wasting your time measuring thousands of right-angled triangles, trying to find one that falsifies Pythagoras’ Theorem. The Pythagoreans proved it, anybody can work through the proof, it’s just true and that’s that. Mathematicians use the idea of proof to make a distinction between a ‘conjecture’ and a ‘theorem’, which bears a superficial resemblance to the OED’s distinction between the two senses of ‘theory’. A conjecture is a proposition that looks true but has never been proved. It will become a theorem when it has been proved. A famous example is the Goldbach Conjecture, which states that any even integer can be expressed as the sum of two primes. Mathematicians have failed to disprove it for all even numbers up to 300 thousand million million million, and common sense would happily call it Goldbach’s Fact. Nevertheless it has never been proved, despite lucrative prizes being offered for the achievement, and mathematicians rightly refuse to place it on the pedestal reserved for theorems. If anybody ever finds a proof, it will be promoted from Goldbach’s Conjecture to Goldbach’s Theorem, or maybe X’s Theorem where X is the clever mathematician who finds the proof.
Carl Sagan made sarcastic use of the Goldbach Conjecture in his riposte to people who claim to have been abducted by aliens.
Occasionally, I get a letter from someone who is in ‘contact’ with extraterrestrials. I am invited to ‘ask them anything’. And so over the years I’ve prepared a little list of questions. The extraterrestrials are very advanced, remember. So I ask things like, ‘Please provide a short proof of Fermat’s Last Theorem’. Or the Goldbach Conjecture . . . I never get an answer. On the other hand, if I ask something like ‘Should we be good?’ I almost always get an answer. Anything vague, especially involving conventional moral judgements, these aliens are extremely happy to respond to. But on anything specific, where there is a chance to find out if they actually know anything beyond what most humans know, there is only silence.
Fermat’s Last Theorem, like the Goldbach Conjecture, is a proposition about numbers to which nobody has found an exception. Proving it has been a kind of holy grail for mathematicians ever since 1637, when Pierre de Fermat wrote in the margin of an old mathematics book, ‘I have a truly marvellous proof . . . which this margin is too narrow to contain.’ It was finally proved by the English mathematician Andrew Wiles in 1995. Before that, some mathematicians think it should have been called a conjecture. Given the length and complication of Wiles’s successful proof, and his reliance on advanced twentieth-century methods and knowledge, most mathematicians think Fermat was (honestly)
mistaken in his claim to have proved it. I tell the story only to illustrate the difference between a conjecture and a theorem.
As I said, I am going to borrow the mathematicians’ term ‘theorem’, but I’m spelling it ‘theorum’ to differentiate it from a mathematical theorem. A scientific theorum such as evolution or heliocentrism is a theory that conforms to the Oxford dictionary’s ‘Sense 1’.
[It] has been confirmed or established by observation or experiment, and is propounded or accepted as accounting for the known facts; [it is] a statement of what are held to be the general laws, principles, or causes of something known or observed.
A scientific theorum has not been – cannot be – proved in the way a mathematical theorem is proved. But common sense treats it as a fact in the same sense as the ‘theory’ that the Earth is round and not flat is a fact, and the theory that green plants obtain energy from the sun is a fact. All are scientific theorums: supported by massive quantities of evidence, accepted by all informed observers, undisputed facts in the ordinary sense of the word. As with all facts, if we are going to be pedantic, it is undeniably possible that our measuring instruments, and the sense organs with which we read them, are the victims of a massive confidence trick. As Bertrand Russell said, ‘We may all have come into existence five minutes ago, provided with ready-made memories, with holes in our socks and hair that needed cutting.’ Given the evidence now available, for evolution to be anything other than a fact would require a similar confidence trick by the creator, something that few theists would wish to credit.
It is time now to examine the dictionary definition of a ‘fact’. Here is what the OED has to say (again there are several definitions, but this is the relevant one):
Fact: Something that has really occurred or is actually the case; something certainly known to be of this character; hence, a particular truth known by actual observation or authentic testimony, as opposed to what is merely inferred, or to a conjecture or fiction; a datum of experience, as distinguished from the conclusions that may be based upon it.
Notice that, like a theorum, a fact in this sense doesn’t have the same rigorous status as a proved mathematical theorem, which follows inescapably from a set of assumed axioms. Moreover, ‘actual observation or authentic testimony’ can be horribly fallible, and is over-rated in courts of law. Psychological experiments have given us some stunning demonstrations, which should worry any jurist inclined to give superior weight to ‘eye-witness’ evidence. A famous example was prepared by Professor Daniel J. Simons at the University of Illinois. Half a dozen young people standing in a circle were filmed for 25 seconds tossing a pair of basketballs to each other, and we, the experimental subjects, watch the film. The players weave in and out of the circle and change places as they pass and bounce the balls, so the scene is quite actively complicated. Before being shown the film, we are told that we have a task to perform, to test our powers of observation. We have to count the total number of times balls are passed from person to person. At the end of the test, the counts are duly written down, but – little does the audience know – this is not the real test!
After showing the film and collecting the counts, the experimenter drops his bombshell. ‘And how many of you saw the gorilla?’ The majority of the audience looks baffled: blank. The experimenter then replays the film, but this time tells the audience to watch in a relaxed fashion without trying to count anything. Amazingly, nine seconds into the film, a man in a gorilla suit strolls nonchalantly to the centre of the circle of players, pauses to face the camera, thumps his chest as if in belligerent contempt for eye-witness evidence, and then strolls off with the same insouciance as before (see colour page 8). He is there in full view for nine whole seconds – more than one-third of the film – and yet the majority of the witnesses never see him. They would swear an oath in a court of law that no man in a gorilla suit was present, and they would swear that they had been watching with more than usually acute concentration for the whole 25 seconds, precisely because they were counting ball-passes. Many experiments along these lines have been performed, with similar results, and with similar reactions of stupefied disbelief when the audience is finally shown the truth. Eye-witness testimony, ‘actual observation’, ‘a datum of experience’ – all are, or at least can be, hopelessly unreliable. It is, of course, exactly this unreliability among observers that stage conjurors exploit with their techniques of deliberate distraction.
The dictionary definition of a fact mentions ‘actual observation or authentic testimony, as opposed to what is merely inferred’ (emphasis added). The implied pejorative of that ‘merely’ is a bit of a cheek. Careful inference can be more reliable than ‘actual observation’, however strongly our intuition protests at admitting it. I myself was flabbergasted when I failed to see the Simons gorilla, and frankly incredulous that it had really been there. Sadder and wiser after my second viewing of the film, I shall never again be tempted to give eyewitness testimony an automatic preference over indirect scientific inference. The gorilla film, or something like it, should perhaps be shown to all juries before they retire to consider their verdicts. All judges too.
Admittedly, inference has to be based ultimately on observation by our sense organs. For example, we use our eyes to observe the printout from a DNA sequencing machine, or from the Large Hadron Collider. But – all intuition to the contrary – direct observation of an alleged event (such as a murder) as it actually happens is not necessarily more reliable than indirect observation of its consequences (such as DNA in a bloodstain) fed into a well-constructed inference engine. Mistaken identity is more likely to arise from direct eye-witness testimony than from indirect inference derived from DNA evidence. And, by the way, there is a distressingly long list of people who have been wrongly convicted on eye-witness testimony and subsequently freed – sometimes after many years – because of new evidence from DNA. In Texas alone, thirty-five condemned people have been exonerated since DNA evidence became admissible in court. And that’s just the ones who are still alive. Given the gusto with which the State of Texas enforces the death penalty (during his six years as Governor, George W. Bush signed a death warrant once a fortnight on average), we have to assume that a substantial number of executed people would have been exonerated if DNA evidence had been available in time for them.
This book will take inference seriously – not mere inference but proper scientific inference – and I shall show the irrefragable power of the inference that evolution is a fact. Obviously, the vast majority of evolutionary change is invisible to direct eye-witness observation. Most of it happened before we were born, and in any case it is usually too slow to be seen during an individual’s lifetime. The same is true of the relentless pulling apart of Africa and South America, which occurs, as we shall see in Chapter 9, too slowly for us to notice. With evolution, as with continental drift, inference after the event is all that is available to us, for the obvious reason that we don’t exist until after the event. But do not for one nanosecond underestimate the power of such inference. The slow drifting apart of South America and Africa is now an established fact in the ordinary language sense of ‘fact’, and so is our common ancestry with porcupines and pomegranates.
We are like detectives who come on the scene after a crime has been committed. The murderer’s actions have vanished into the past. The detective has no hope of witnessing the actual crime with his own eyes. In any case, the gorilla-suit experiment and others of its kind have taught us to mistrust our own eyes. What the detective does have is traces that remain, and there is a great deal to trust there. There are footprints, fingerprints (and nowadays DNA fingerprints too), bloodstains, letters, diaries. The world is the way the world should be if this and this history, but not that and that history, led up to the present.
The distinction between the two dictionary meanings of ‘theory’ is not an unbridgeable chasm, as many historical examples show. In the history of science, theorums often start off as ‘mere’ hypotheses. L
ike the theory of continental drift, an idea may even begin its career mired in ridicule, before progressing by painful steps to the status of a theorum or undisputed fact. This is not a philosophically difficult point. The fact that some widely held past beliefs have been conclusively proved erroneous doesn’t mean we have to fear that future evidence will always show our present beliefs to be wrong. How vulnerable our present beliefs are depends, among other things, on how strong the evidence for them is. People used to think the sun was smaller than the Earth, because they had inadequate evidence. Now we have evidence, which was not previously available, that shows conclusively that it is much larger, and we can be totally confident that this evidence will never, ever be superseded. This is not a temporary hypothesis that has so far survived disproof. Our present beliefs about many things may be disproved, but we can with complete confidence make a list of certain facts that will never be disproved. Evolution and the heliocentric theory weren’t always among them, but they are now.
Biologists often make a distinction between the fact of evolution (all living things are cousins), and the theory of what drives it (they usually mean natural selection, and they may contrast it with rival theories such as Lamarck’s theory of ‘use and disuse’ and the ‘inheritance of acquired characteristics’). But Darwin himself thought of both as theories in the tentative, hypothetical, conjectural sense. This was because, in those days, the available evidence was less compelling and it was still possible for reputable scientists to dispute both evolution and natural selection. Nowadays it is no longer possible to dispute the fact of evolution itself – it has graduated to become a theorum or obviously supported fact – but it could still (just) be doubted that natural selection is its major driving force.
Darwin explained in his autobiography how in 1838 he was reading Malthus’s On Population ‘for amusement’ (under the influence, Matt Ridley suspects, of his brother Erasmus’s formidably intelligent friend, Harriet Martineau) and received the inspiration for natural selection: ‘Here, then I had at last got a theory by which to work.’ For Darwin, natural selection was a hypothesis, which might have been right or might have been wrong. He thought the same of evolution itself. What we now call the fact of evolution was, in 1838, a hypothesis for which evidence needed to be collected. By the time Darwin came to publish On the Origin of Species in 1859, he had amassed enough evidence to propel evolution itself, though still not natural selection, a long way towards the status of fact. Indeed, it was this elevation from hypothesis towards fact that occupied Darwin for most of his great book. The elevation has continued until, today, there is no longer a doubt in any serious mind, and scientists speak, at least informally, of the fact of evolution. All reputable biologists go on to agree that natural selection is one of its most important driving forces, although – as some biologists insist more than others – not the only one. Even if it is not the only one, I have yet to meet a serious biologist who can point to an alternative to natural selection as a driving force of adaptive evolution – evolution towards positive improvement.
The Greatest Show on Earth Page 2