During each of these two shallow episodes, no authentic out-ofbody experience occurred. And only for a few years afterwards, each time I voluntarily retrieved the episode from memory, did the curious (retrospective) impression arise that seemed to place the point from which my "mind's eye memory" witnessed the scene at a level higher than its original position.
These kinds of fast, inspired mental processing are reminiscent of other fluid states of absorption that athletes call "being in the zone." In such dynamic states, complex mental and physical acts come together automatically, efficiently, and proceed effortlessly. Again, vision is intact, but some residual sense of self-awareness usually remains in the background.
Whether a person's peak of awakening to the living reality of "all things as THEY are" comes quickly or gradually, we need to know more about its psychophysiological origins."This scientific knowledge is important to humankind, because one who experiences it can be transformed by it, as Saul of Tarsus was converted on the road to Damascus. Whether one is possessed or liberated as a result of such deep insightful comprehensions depends both on the individual and on the circumstances. We can hypothesize that some of the quality of salience arrives when those smaller circuits throughout the brain that subliminally reinforce an idea with a "genuine, good, and true" feeling become linked together and fire in unison. This is not an epilepsy-like firing within the motor system such as would cause a muscle to twitch. Rather, the inference is that compelling nerve cells have dischargednerve cells normally conferring feelings of a quality we experience all too rarely-enchanted states extending between deep spiritual awareness and rapture. Perhaps we should go out of our way to encounter more frequently some of these normal states of spiritual awareness, encourage them by exercising them spontaneously through more frequent, relaxed contacts with music, art, or with a satisfying personal religion. If we did, then perhaps the feeling tones that we pull up and link with our intuitions would be deeper, more frequent, more satisfying and more memorable.
But the substance of our intuitions is one thing, and the feelings of authenticity that go along with them are another. We must remind ourselves of our splendid limitations: in our own nerve cells lies the source of our perceptions, deepest feelings, and beliefs. We hope these are fully in accord with reality, but they may not be. As long as the brain remains the organ of our conscious mind, a seductive palpitation welling up from the depths of the brain no more implies that an idea is valid, or that we have actually come into actual union with the cosmos, than does a palpitation of the heart. Herein lies the dilemma, not only for a scientist like Einstein, but for the rest of us. We must be as receptive as Einstein was to the mystical music of the spheres, yet ultimately we both must run each cherished belief through the gauntlet of our doubt. For the scientist in particular, this is never a guided tour carefully avoiding all obstructions, but a rigorous, self-imposed obstacle course. He can never accept as wholly true what he leaves untested. In the final analysis, what will be most important to him is not one particular belief but rather what Charles S. Peirce, the American philosopher, called a consistent "integrity of belief.""' This, a product of time, will come only when believing is habitually bonded to testing.
If you take on a problem to solve creatively, whether you are at the laboratory bench or elsewhere in life, there are basically two ways you can proceed. You can move out into the external world, encounter random new ideas as a result of chance, and incorporate them into fresh creative solutions. Or, you can reach inward to your storehouse of memories, generating a new solution from facts and feelings already existing within. Insight is one word used to describe the process, for it does signify seeing inward. Intuition is another. For our present purposes, we're drawing a distinction between the two words: letting intuition refer to the general process which helps us know directly without pausing to think about it; reserving insight for those more extraordinary, deeper experiential penetrations that comprehend the essential nature of all things.
Meditation also involves tuning in to some inner dimension. Many objective physiological changes occur during meditation. Can we learn anything about creativity from these changes? Do they tell us anything about how the search within and without takes place?
In general, the diverse physiological changes reported during passive, relaxing forms of meditation suggest that the activity of many neurons has been quieted or "turned down" as their firing rate is slowed. Respirations slow to only four to five per minute, far lower than during the normal waking state or during sleep. Heart rate falls, expirations are prolonged, abdominal breathing predominates, total oxygen consumption is moderately reduced, blood lactate falls, and the basal metabolic rate drops 15 to 20 percent." Because meditation markedly reduces the usual associative play of ideas, it may follow that some large associative areas of the cerebral cortex are no longer fully activated.
But we must avoid one generalization at this point. For it does not follow that the firing rate of all nerve cells is reduced or that all mental activities are reduced. All is not quiet during meditation, any more than quiet prevails during sleep. In fact, we know that when we sleep many neurons must still stay "wide awake," for our dreams imply a heightened, not a reduced, level of one kind of mental activity. It has also been shown that most rapid eye movements occur during the dreaming phases of normal sleep, meaning that motor nerve cells are activated in the brain stem that trigger the muscles to the eyes. Moreover, direct experimental measurements in animals tell us that certain other nerve cells in the brain stem fire even more rapidly than normal during the actively dreaming phases of sleep and during transitions between states.
As some brain activity still occurs in sleep, so too does it appear to occur during proper meditation. Not everything shuts down. The firing of nerve cells down in the core of the brain apparently keeps some perceptions keenly attuned. This is more likely to occur if the eyelids are open at least partially. In addition, during meditation, the organizing functions deeper in the brain extend their influence up and out to impart a novel kind of reordering to the usual rhythms of the cortex. Now the pattern of brain wave activity from the right hemisphere tends to become synchronized during meditation with that from the left. Waves from the front of the cerebrum may achieve a rare degree of unity with those in the back." During the tranquil meditative state, as the clutter of everyday associational noise is markedly reduced, there then flows out from the center a receptive state of calm, transparent awareness, during which the brain can continue to respond to stimuli and the novel properties of each signal persist.
Meditation may, therefore, involve tradeoffs with regard to some aspects of creativity. During a half hour of meditation, and for a variable period thereafter, the creative brain may lose momentarily the obvious benefits that would occur when one's self-directed intellect harnesses the thrust of fluent, freewheeling associative play. But during the hours and days that follow, the brain may gain from those attitudes of the clear refreshed mind that encourage simplicity, spontaneity, introspection, and meaningful direct experience. These salutary changes can bring more than a restful change of pace; they can also create a feeling of being elevated on a higher plateau of attitudes. From this perspective new motivations can take off, and in this way over a period of time one expands the repertoire of styles used to solve complex problems. As May observes, "Human freedom involves our capacity to pause between stimulus and response and, in that pause, to choose the one response toward which we wish to throw our weight."2'
Many years will pass before we have a coherent picture of the circuitries at work and at play within our complex nervous system. In fact, our brain is made up of an enormous number of hierarchial subsystems, each checking and balancing out the other. The complexities of this process boggle the mind. They would confuse even the consummate politician, well-versed as he must be in the contending checks and balances of our systems of city, county, state, and federal government jousting during an election year.
Messenger molecules, released from the nerve endings of one cell, go on to act on tiny receptors studding the membranes of the next cell. The biogenic amines (serotonin, norepinephrine, and dopamine) are among these messengers. On balance, most of these amine receptors act directly to slow the firing of this next nerve cell. But the brain's chief inhibitory workhorse is GABA (gamma-aminobutyric acid), and its many receptors slow the next cell more quickly. How easy it is to miss the crucial importance of a slowing down of the next nerve cell. Faster means better in our Western culture. Doesn't it?
Not in the nervous system, it doesn't. Let us start with one nerve cell, and call it cell A. If the transmitter from this cell normally quiets the next cell by slowing its firing rate, two important things can occur. Which of these predominates? It will depend on how the circuits are wired between cell B and the next cells farther on down the line. For the first example, let us suppose that nerve cell B normally quiets cell C, blocking its firing. Now, if cell A fires much more than usual and further slows cell B, it will follow in sequence that nerve cell C will then be speeded up as it escapes from the inhibition of cell B. Furthermore, if the normal function of cell C is to excite the next neuron, D, then the initial quieting effect from cell A will ultimately be transmuted into an excitatory action on cell D because cell C will speed up its firing rate. A somewhat analogous situation occurs in mathematics: a negative times a negative becomes a positive.
For the second example, we need to know how effective cell B is to begin with. Suppose it is chronically overloaded. It is firing too many impulses in response to too much "noise." It is discharging so many times that its message lacks contrast, and it gets tuned out by cell C. In this situation, if we really wish to improve the effectiveness of cell B, we would want to reduce its excitability, slow it down to a more optimal rate, or at least vary its firing rate so the next cell on down the line will sit up and take notice that the new message represents a change. In this instance we see that by reducing the noise level in. the background, both on cell B and from cell B, the impact of each signal on it, and from it, can be enhanced.
What the last two illustrations show is that quieting down one part of the nervous system is not only compatible with increased sensitivity of another part, but that slowing one part ni y actually facilitate the speeding up, or the sensitivity, of another part. No paradox here. The nervous system just doesn't operate the same way throughout: the plus signs and the minus signs on nerve cell receptors within its myriads of circuits make for some fantastically varied combinations.
What other systems could be slowed during a tranquil state of meditation? The fast messengers (glutamate and acetylcholine) of the reticular activating system are reasonable candidates. They are part of a long network of many nerve cells ascending from deep down in the core of our brain stem. Normally, we are aroused and alerted when the activating system and its projections fire upward toward the cerebrum. When its relay of signals reaches many sets of nerve cells located still higher, we can next start to focus our attentive behavior more selectively on the external world. Our eyes open wider, we lean forward and orient toward a particular stimulus that sounds or looks interesting. These alerting signals block alpha waves in the EEG and replace it with low-voltage fast activities. Therefore, we can view as the opposite of conventional, alpha wave, relaxed idling the whole normal process of being aroused and focusing our attention on our external environment.
To sustain such a high level of focused attention, we depend on a constant tonic flow of impulses back and forth along the circuits between our ascending reticular formation and still other higher centers. We may speculate that after the reticular formation helps alert the brain stem, subcortex, and cortex, it is these higher levels of neuronal functioning that help us decipher the meaning of what we see, hear, or feel. Our convoluted cortex, in particular, helps us become more discriminating. Then, when the limbic system feeds in its feeling tone, what is consciously perceived can finally be understood in terms of past experience, and given a relevant emotional value on the scale of: danger-badgood-terrific. This to and fro interplay of millions of nerve cells is what normally makes up our everyday attention to the external world and gives it internal significance.
However, the most focused attention will dwindle into gross neglect if connections are blocked between the above systems. If even a small interruption is placed on only one side of the reticular activating system of a hungry monkey, he will ignore the apple on the opposite side of his external environment. His eyes are not blind, but neither does he "see" the apple except in the most fragmentary sense, because for purposes of active behavior, it really doesn't register as an apple on the one side of his hungry brain that is disconnected and disintegrated from his activating system. As a result, the monkey pays no attention to the apple-unless it is placed on the other side of his environment toward which his reactions remain physiologically intact.';
Taken as a whole, the evidence suggests that some changes during meditation may reflect a tuning down of the tone of the reticular system and its extensions, while also raising the possibility that some functions of opposing systems may be relatively enhanced in the process. What is unusual about the more advanced degrees of clear meditative awareness is that brief, intermittent arousals can still recur even though the overall background activity of brain waves recorded from the scalp has become slower. So, the "Eastern Front" is not invariably quiet. One might conceptualize its long broad valleys of slower waves and mental diastole as capable (occasionally) of rising to a plateau of one-pointedness; or (more rarely) of culminating in a few "peaks" of faster gamma waves and illuminating systole. One implication is that certain of our usual activating mechanisms can lose some of their capacity to fire continually, without this preventing other brain rhythms from sometimes exercising their independent capacities to fire episodically and coherently. This quiet means readiness.
What could tuning down the tonic activity of the alerting mechanism have to do with creativity? Don't you have to be alert to be creative? Certainly, but our brains do not function the same way throughout each step in the creative sequence. For example, you clearly need to be slightly alert and aroused during the earlier phases of problem solving, but success falls off in later phases of the creative response if you stay alerted beyond an optimum level. This has been clear from experiments on human subjects who became less original on word association tests when external stresses drove them toward higher levels of arousal.''
Moreover, suppose you start with the two abilities-one, the capacity to focus your concentration, the other the capability to browse internally in a more unfocused manner. It is not to your advantage constantly to deploy one at the expense of the other for hours on end. In fact, what you really need is to be able to shift flexibly, and repeatedly, from one mental mode to the other at exactly the right time. The creative do have physiological abilities to fluctuate: they have an unusual ability to suppress alpha waves in their EEG,2' their heart rates vary more than others in response to an inkblot task,27 and their eyes move more as they shift from the analytical stage of problem-solving into the synthetic stage when they put it all together in a new way.''"
Highly creative subjects also generate more alpha waves in the EEG while they are actually engaged in those association tests that involve their imagination." On the other hand, they tend to have fewer alpha waves at rest, and develop fewer alpha waves when, in test situations, their intelligence needs to be highly focused.' These two sets of findings suggest that there may be an important difference in the brains of most creative persons: they are tight-loose types. If they are somewhat less relaxed at rest than controls, they can later become more relaxed when absorbed in the free-wheeling, mulling over phase of the creative sequence that calls for freedom of associations.
Theta waves, slower than alpha, occur in the EEG in deeper meditative states. Some evidence suggests that abundant theta waves also occur during the subliminal state of pre-consciousness, termed
reverie, in which sudden dreamlike images occur. It will be interesting to see whether well-controlled experiments that attempt to increase theta waves will enhance visual imagery and cause a measured long-lasting increase in creativity. Such studies are already under way." In the interim, it may be noted that persons undergoing regular theta training do feel better integrated. They report, for example: "I'm getting clearer and clearer"; "I feel so put together"; "I feel so with it.""
The ease with which meditators can learn to let go and enter a satisfying state of calm, detached awareness does correlate with their basic ability to produce spontaneous visual imagery, to free associate, and to tolerate any unreal experiences that may occur." Again we see that in the collage of mental abilities open to human beings, being tautly integrated and staying loose need not be mutually exclusive.
What do these preliminary experiments suggest? They remind us that we need several kinds of sensitivity to visual and other clues when we gather preliminary data for creative work. They also emphasize that throughout the long, tough-minded creative sequence we must still blend in moments of freshness, clear perception, novelty, inspired imagery, quiet introspection, and flexibility if we are to succeed. Finally, we begin to envision some neurophysiological basis for at least two kinds of mental processes. One kind includes the seemingly quiet periods when we can still be aware, relaxed, and responsive. The other includes those all too rare peak moments of insight that thrust us upward. It is these quiet and peak moments, each working with the other, that generate a fresh mental topography, form new troughs and plateaus, new contours of experience in the brain during the long creative process.
Chase, Chance, and Creativity Page 23