The Singularity Is Near: When Humans Transcend Biology

Home > Other > The Singularity Is Near: When Humans Transcend Biology > Page 86
The Singularity Is Near: When Humans Transcend Biology Page 86

by Ray Kurzweil


  microbivores (robotic macrophages), 254, 306

  microbots, 333

  MicroCHIPS, 242–243

  microfluidic devices, 242

  microprocessors, 116, 119

  clock speed of, 61, 63, 66

  cost per transistor cycle of, 62, 62, 66

  performance in MIPS of, 64–65, 64, 66

  transistors per, 63, 63, 498n

  microscopes, 47–48, 163

  atomic-force (AFM), 138, 237, 536n

  scanning probe (SPM), 237, 240

  Microsoft, 284, 286–287

  Microsoft Word, 147, 538n

  microtubules, 383, 429, 449–452

  Microvision, 586n

  microwaves, 165, 247, 250, 343

  midbrain, 193

  Miles, J. B., 515n

  military:

  AI used by, 259, 279–280, 281, 284

  development times reduced in, 334

  nanobots used by, 300, 333, 400

  robots, 189, 280, 285, 331–332, 333

  virtual reality used by, 312, 335, 586n

  warfare and, 330–335

  see also weapons

  military manuals, 594n

  Milky Way galaxy, 342–348, 590n

  Miller, Arthur, 376, 593n

  Miller, E. K., 542n

  Miller, Mark, 598n

  Miller, Max, 21

  Miller, Steve, 175

  MIMD (multiple instruction multiple data) architectures, 120

  mind, 143, 444

  Church-Turing thesis and, 454

  expansion of, 316–317

  growth of, 324

  longevity of, 325, 329

  Mind Children (Moravec), 24

  “Minds, Brains, and Science” (Searle), 458

  “Minds, Machines, and Gödel” (Lucas), 259, 376

  miniaturization, 245, 407, 411

  law of accelerating returns and, 42–43, 45, 57–61, 57–60, 60, 73, 82–84, 82–84, 96, 102

  military and, 332, 334, 335

  price-performance of electronics and, 111–112, 526n

  shrinking transistors and, 42–43, 45, 61, 76, 111–112, 113, 351, 434

  see also nanobots; nanotechnology

  minimax algorithm, 275–277

  Minsky, Marvin, 156, 177, 189, 202, 203, 228, 260, 289, 473, 497n, 539n, 570n, 582n

  Minteer, Shelley, 565n

  mirror system hypothesis, 190

  missiles, 423

  cruise, 255, 279–280, 335

  guidance for, 255, 276, 279–280

  MIT, 157, 285, 337

  Artificial Intelligence Laboratory of, 264

  Institute for Soldier Nanotechnologies at, 332

  Media Lab, 113, 221

  Open Courseware of (OCW), 336

  visual processing studies at, 186, 194

  mitochondria, 219–220, 583n

  Mobile Robot Laboratory, 529n

  model constraints, 152

  modernity, 387

  Modis, Theodore, 19, 501n–503n, 507n

  Mohan, Anuj, 547n

  molecular assemblers, 228–231, 261

  molecular circuits, 27

  molecular computing, see three-dimensional molecular computing

  molecular manufacturing, 11, 13, 226–231, 242, 250, 258, 422, 434, 457, 557n–558n

  body changes and, 310, 324, 372

  cost of, 230–231, 338–339, 340

  energy efficiency of, 245, 340

  Foresight guidelines for, 418–419

  goal of, 234

  molecular assemblers and, 228–231, 261

  safeguards for, 400

  software design for, 231

  molecular photography technique, 119

  molecules, 14, 16, 85, 131, 383, 499n

  AGEs and, 220

  brain uploading and, 199–200

  “chaperone,” 209

  design of, 483

  in gas, 168

  in ice chips vs. cup of water, 510n

  nanobots and, 28

  money, 478

  monkeys, 186, 193

  Montemagno, Carlo, 234, 516n, 560n, 561n, 585n

  moon, energy harvesting on, 246

  Moore, Gordon E., 56, 111–112, 485, 512n, 513n, 526n

  Moore, Patrick, 391, 414, 415, 598n, 601n

  Moore, T. B., 552n

  Moore’s Law, 35–36, 41–42, 56–72, 76, 114

  criticism of, 66, 111–112

  as fifth paradigm, 41, 66–72, 67, 72, 112

  semiconductor feature size reduction and, 57–66, 57–65, 434

  moral intelligence, 8, 192

  morality, 369, 374–375, 379

  Moravec, Hans, 148, 290, 464, 504n, 513n, 514n, 531n, 547n, 582n, 601n

  brain computational capacity estimated by, 123, 529n

  on evolution of computer power/cost, 68, 69, 122

  image processing and, 123, 187–188

  robotics and, 24, 122, 123, 187–188, 205, 285

  More, Max, 262, 369, 371, 373, 510n, 569n, 593n, 596n

  Moreau, René, 513n

  Morgenstern, Oskar, 499n

  Morris, Michael S., 355–356, 592n

  Morris, Tom, 485

  mortgage applications, 284

  Moshfegh, Allen, 333, 589n

  motion, 145

  Brownian, 254, 388, 520n, 570n

  detection of, 123, 156, 188, 547n

  digital basis for, 86

  of nanobots, 254

  motor cortex, 175

  motor neurons, 166, 180–181

  motor skills, brain region for, 173

  Mottaghy, F. M., 540n

  mousepox, 398

  movies:

  downloading of, 339–340

  eye’s extraction of, 186–187, 187

  see also specific movies

  Moving Object and Transient Event Search System (MOTESS), 281

  MP3 files, decoding of, 276

  MP3 players, 312

  MRAM (magnetic random-access memory), 119

  MT (visual area), 185

  Muggeridge, Malcolm, 372

  multielectrode recording, 163

  multiple sclerosis, 308, 555n

  multiple universes (parallel multiverses; “bubbles”), 15, 360, 362, 390, 499n–500n

  multiplication, neurons’ performing of, 155–156

  Mumford, D., 547n

  Murakami, Shuichi, 530n

  muscles, 191, 210, 232, 552n

  cerebellum and, 179, 181, 260

  virtual reality and, 314

  Musgrave, Charles B., 562n, 563n

  music, musician(s), 145, 191, 194, 202, 498n

  as analog vs. digital phenomenon, 519n

  author’s father as, 327, 339, 497n

  of bands of cells, 297

  brain plasticity and, 174, 176

  downloading of, 100, 339

  imagining of, 379

  as knowledge, 372, 375

  live performances by, 340

  pattern and, 388

  virtual reality and, 312

  music players, 473

  Mussa-Ivaldi, Ferdinando, 189

  mutations, 46, 219

  genetic algorithms and, 270, 539n

  in human evolution, 42, 92, 208, 506n, 539

  mitochondrial, 219–220

  protein and, 553n

  Mutschler, Ann Steffora, 526n

  mutual assured destruction, 402, 421

  MYCIN system, 266–267

  MYH1 gene, 506n

  Naam, Ramez, 299

  Nagaosa, Naoto, 118–119, 530n

  nanobots, 28, 32, 33, 201, 232–238, 252

  in biomass, 399–400, 425–426

  in blood, 248, 253–257, 300, 303, 317, 377, 432, 472

  blood-brain barrier and, 163–165

  as brain extenders, 317

  brain scanning with, 163–167, 197, 200, 262, 293

  colonies of, 352–353

  control of, 255, 406–407

  defined, 163

  in digestive system, 303–305

 
DNA, 236

  in Drexler’s molecular assembler, 229–230, 231, 236–238

  energy and, 246, 248, 249

  fat and sticky fingers problem and, 236–238

  foglets, 28, 29, 33, 310, 325, 506n

  GNR age impact and, 302–307, 352–353, 358, 398–400, 403, 409

  human longevity and, 325

  military’s use of, 300, 333, 400

  programmable, 317

  self-replication of, 232, 237, 256, 352, 398–400, 403, 409, 411–412, 416, 425–426

  software viruses and, 406–407

  strong AI and, 261–262

  virtual reality and, 28, 29, 310, 313–317, 319, 377

  wireless communications used by, 163, 233, 303, 304, 316

  nanocatalysts, 246, 252

  nanocomputing, 139, 232–236, 233, 412

  limits of, 133–135, 349

  nanoelectromechanical systems (NEMS), 309

  nanofactories, 245, 340, 425

  nanofilters, 246, 252

  nanogrids, 117

  nanolayers, 251

  Nano Letters, 113–114

  nanoparticles, 242–243, 250–253

  military’s use of, 332, 335

  with recognition proteins, 583n

  nanostructures, 251

  Nanosys, 250

  Nanosystems (Drexler), 228, 229–230, 234

  nanotags, magnetic, 242

  nanotechnology, 4, 27, 28, 84, 111, 141, 205, 206, 221, 226–259, 299–300, 323, 558n–568n

  biological assembler and, 231–232

  biotechnology compared with, 227, 232, 251, 256, 257, 412

  dangers of, 11, 206, 229, 230, 237, 241, 249, 251, 256, 334, 395, 398–400, 403, 408–419, 423

  early adopters of, 242–243

  economic effects of, 102, 245–246, 249–250, 257

  energy based on, 133, 243–250, 340, 395, 397, 430, 434, 457

  energy required for, 230, 238, 244, 245, 352

  environment and, 229, 230, 250–253, 259

  ethical issues and, 229

  exponential growth and, 27, 73, 227, 396, 407, 558n

  fat and sticky fingers problem and, 236–238

  foundations of, 139, 227–231

  limits of, 133–135, 138

  medicine and, 238, 242–243, 251, 253–255, 259, 300, 303–305, 377, 407

  military use of, 300, 332–335

  patents for, 84, 84

  relinquishment of, 395, 411

  in reversal of aging, 372, 373, 397

  science citations of, 83, 83

  self-replication and, see self-replicating nanotechnology

  strong AI and, 261–262, 412, 426

  technology hype cycle for, 263–264

  thermal effects and, 238

  threshold of, 60, 112

  transportation and, 230, 246, 247, 252, 457–458

  wealth creation from, 13, 107, 396–397

  see also molecular manufacturing

  Nanotherapeutics, 243

  nanotubes and nanotube circuitry, 27, 112–115, 122, 247, 248, 526n–528n, 558n

  carbon, 27, 113, 114, 229, 230, 234–235, 238, 246, 250, 375, 527n

  environmental applications of, 251, 253

  self-assembly in, 112–113, 115–116, 528n

  nanoweapons, 300, 334–335

  nanowires, 117, 121

  Nantero, 114–115

  narrow AI:

  applications for, 276, 279–289, 293

  defined, 92, 264

  NASA, 24, 116, 235, 250, 280–281, 333

  NASDAQ, 284

  Nash, Ogden, 391

  Nathanson, H. C., 516n

  National Cancer Institute, 282

  National Nuclear Security Agency, 307, 533n, 585n

  natural selection, 21–22, 127, 195

  nature:

  molecular machines in, 231–232

  technology’s emulating of, 146, 149, 479–483

  transcendence and, 388, 389

  Nedervelde, Philippe Van, 598n

  Nehaniv, Chrystopher L., 548n

  Nelson, David, 502n

  neocortical neurons, 171

  Neumann, John von, 10, 227–228, 401, 498n–499n, 558n

  kinematic constructor of, 29, 228

  neural chips, 188, 195

  neural clusters, 168, 197

  neural diseases, 304

  neural implants, 28, 201, 374, 377, 443, 483

  challenge in connection of, 195

  nanobots compared with, 317

  for Parkinson’s disease, 195, 255, 308, 384, 585n

  for retinas, 185, 308, 585n

  neural nets, 89, 149, 173, 268–270, 288, 428, 442, 446, 481

  algorithmic description of, 269, 570n–574n

  backpropagation and, 156

  biological, 269–270

  business use of, 283

  connectionism and, 155, 156

  defined, 539n

  genetic algorithms combined with, 271, 278–279

  McCulloch-Pitts model of, 155, 170

  pattern recognition and, 151, 152, 156, 268–269, 271, 461

  Perceptron, 574n

  neural precursor cells, 177

  neural processing, criticism from complexity of, 428–429, 442–450

  neurogenesis, 177

  neuromorphic electronic systems, 533n

  neuromorphic models, 178–194, 197, 308, 316, 440

  of auditory regions, 123–124, 147–148, 183–184, 185, 529n, 545n–547n

  of cerebellum, 178–183, 180, 182

  of hippocampus, 188

  of neural regions, 452

  of olivocerebellar region, 189

  of visual system, 185–188, 187

  neuromorphic simulations, 122, 124–125, 438, 440, 527n, 530n

  neurons, nervous system, 46, 85, 145, 202, 223, 468–469, 474, 475, 600n

  in auditory cortex, 124

  biological limitations to, 27, 127, 144

  blood flow and, 161

  brain modeling and, 4, 172–173, 428, 443, 452, 455

  brain reverse engineering and, 163–167, 440, 444, 530n

  building of, 111

  change of, 325, 383

  chaotic computing and, 173

  chip compared with, 530n, 538n

  complexity of, 143–144, 153, 155, 197, 455

  damage to, 173, 308

  design of, 153

  early models of, 154–157, 169

  electronic, 173

  excitatory vs. inhibitory, 157

  feedforward sequence of, 154, 170

  firing of, 147, 150, 155, 162, 170, 173, 176, 269, 313, 446

  formation of, 177

  Hebb’s learning theories for, 156–157, 170–171

  of human vs. nonhuman primates, 506n

  information in, 15, 16, 127

  information processing times and, 8–9, 26, 27, 71, 503n, 504n, 505n

  loss of, 152, 293

  measurement of electrical output of, 154

  membrane of, 442–443

  motor, 166, 180–181

  nanobots’ interaction with, 28, 165–166, 300, 319, 377

  personality and, 200

  plasticity of, 171–172

  quantum computing and, 429, 450–452

  response time of, 172

  in retina, 123

  as self-organizing, 151, 538n

  simplicity of, 143–144

  simulation of, 268–269, 455

  stabilization time of, 150

  subcellular components vs., 169–170

  virtual reality from within, 28, 29, 165, 300, 377

  see also axons; dendrites; soma; spines; synapses

  neuron transistors, 308, 313

  neuroscience, 154, 168–169

  neurotransmitters, 153, 163, 199, 257, 378, 430

  in analog domain, 147, 149

  defined, 145

  information and, 47

  memory and, 127, 137, 329, 523n

  patterns of, 260, 317, 337, 440, 445, 463

 
in synapses, 145, 147, 153, 170

  neutrons, 14

  newborns, 152, 193

  Newburger, Eric C., 511n

  Newell, Allen, 264, 273, 569n

  New Kind of Science, A (Wolfram), 85, 90, 519n

  Newton, Isaac, 473, 485

  Newtonian physics, 520n

  Ng, Y. Jack, 342, 590n

  Nicolaescu, Roxana, 567n

  Nicolelis, Miguel, 194–195

  Niehaus, Ed, 598n

  Nietzsche, Friedrich Wilhelm, 373, 374, 475

  911 emergency systems, 255, 413

  Ningaraj, Nagendra S., 541n

  Nippon Telegraph and Telephone Corporation (NTT), 113

  Nishizawa, Matsuhiko, 565n

  Nissen, S. E., 554n

  nitric oxide, transmembrane diffusion of, 170, 446

  nitrogen, 551n

  Nixon, Richard M., 391

  NMDA receptors, 383

  Nobel, Alfred, 404

  noise, 38

  Nomad for Military Applications, 586n

  nonbiological experience, transformation to, 324–326

  nonbiological intelligence:

  change in meaning of, 311

  concern about, 30

  consciousness of, 376–380, 385, 475

  design and architecture freedom of, 26, 27, 31

  emotional, 28–29, 145, 377–379, 385

  energy and matter saturated by, 15, 21, 29, 45, 364, 375, 389, 511n

  exponential growth of, 257, 300, 316, 377, 407

  feedback cycle of, 28

  as human, 3, 317, 409

  in human brain, 28, 201–202, 377, 472

  knowledge sharing and, 20, 26, 145, 202–203, 260

  merger of biological intelligence with, 4, 9, 24, 25, 47, 123, 128, 197, 296, 300, 316–317, 337, 340, 372, 375–376, 377, 424

  prevalence of, 226, 309, 335, 350, 352, 375, 377

  silicon vs. carbon, 375

  speed of, 26, 27

  spiritual experiences of, 377

  strengths of, 26, 27

  Turing test and, see Turing test

  see also artificial intelligence

  nonlinearity:

  in neuronal information processing, 124, 137, 138, 148, 150–151, 155, 197, 428, 442, 452, 503n, 527n

  as requirement for self-organizing system, 155

  nonsexual reproduction, 46

  “nor” gate, 94, 523n

  notebook computers, 64–65, 247

  Notebooks (Butler), 96

  “Note for Physicists” (Wolfram), 519n, 521n

  Novamente architecture, 279

  Nowatzyk, Andreas, 161

  nuclear energy, 20

  natural, 139–140, 503n

  nuclear reactors, 243, 252

  power plants, 255, 420

  nuclear war, 401

  nuclear-waste management, 252

  nuclear weapons, 397–398, 401–402, 423

  atomic bomb, 392–393, 404, 408, 594n

  proliferation of, 393, 401–402, 426

  nucleic acids, 47, 423

  nucleotides, 207

  nucleus, 198, 208, 219

  cloning and, 221–222, 556n

  cochlear, 184

  genes inserted into, 215, 220, 323

 

‹ Prev