by Michio Kaku
If signals are found from an advanced civilization, it could be one of the most significant milestones in human history. Hollywood movies love to describe the chaos this event might unleash, with prophets telling us that the end is near, with crazy religious cults going into overtime, etc.
The reality, however, is more mundane. There will be no need for immediate panic, since this civilization may not even know that we are eavesdropping on their conversations. And if they did, direct conversations between them and us would be difficult, given their enormous distance from us. First, it may take months to years to fully decode the message, and then to rank this civilization’s technology, to see if it fits the Kardashev classification. Second, direct communication with them will probably be unlikely, since the distance to this civilization will be many light-years away, too far for any direct contact. So we will be able only to observe this civilization, rather than carry on any conversation. There will be an effort to build gigantic radio transmitters that can send messages back to the aliens. But in fact, it may take centuries before any two-way communication is possible with this civilization.
NEW CLASSIFICATIONS
The Kardashev classification was introduced in the 1960s, when physicists were concerned about energy production. However, with the spectacular rise of computer power, attention turned to the information revolution, where the number of bits processed by a civilization became as relevant as its energy production.
One can imagine, for example, an alien civilization on a planet where computers are impossible because their atmosphere conducts electricity. In this case, any electrical device will soon short-circuit, creating sparks, so that only the most primitive forms of electrical appliances are possible.
Any large-scale dynamo or computer would quickly burn out. We can imagine that such a civilization might eventually master fossil fuels and nuclear energy, but their society would be unable to process large amounts of information. It would be difficult for them to create an Internet or a planetary telecommunications system, so their economy and scientific progress would be stunted. Although they would be able to rise up the Kardashev scale, it would be very slow and painful without computers.
Therefore, Carl Sagan introduced another scale, based on information processing. He devised a system in which the letters of the alphabet, from A to Z, correspond to information. A Type A civilization is one that processes only a million pieces of information, which corresponds to a civilization that has only a spoken language but not a written one. If we compile all the information that has survived from ancient Greece, which had a flourishing written language and literature, it is about a billion bits of information, making it a Type C civilization. Moving up the scale, we can then estimate the amount of information that our civilization processes. An educated guess puts us at a Type H civilization. So therefore, the energy and information processing of our civilization yields a Type .7 H civilization.
In recent years, another concern has arisen: pollution and waste. Energy and information are not enough to rank a civilization. In fact, the more energy a civilization consumes and the more information it spews out, the more pollution and waste it might produce. This is not an academic question, since the waste from a Type I or II civilization might be enough to destroy it.
A Type II civilization, for example, consumes all the energy that is produced by a star. Let us say that its engines are 50 percent efficient, meaning that half the waste it produces is in the form of heat. This is potentially disastrous, because it means that the temperature of the planet will rise until it melts! Think of billions of coal plants on such a planet, belching huge amounts of heat and gases that heat the planet to the point that life is impossible.
Freeman Dyson, in fact, once tried to find Type II civilizations in outer space by searching for objects that emit primarily infrared radiation, rather than X-rays or visible light. This is because a Type II civilization, even if it wanted to hide its presence from prying eyes by creating a sphere around itself, would inevitably produce enough waste heat so that it would glow with infrared radiation. Therefore he suggested that astronomers search for star systems that produce mainly infrared light. (None, however, were found.)
But this raises the concern that any civilization that lets its energy grow out of control may commit suicide. We see, therefore, that energy and information are not enough to ensure the survival of the civilization as it moves up the scale. We need a new scale, one that takes efficiency, waste heat, and pollution into account. A new scale that does is based on another concept, called entropy.
RANKING CIVILIZATIONS BY ENTROPY
Ideally, what we want is a civilization that grows in energy and information, but does so wisely, so that its planet does not become unbearably hot or deluged with waste.
This was graphically illustrated in the Disney movie Wall-E, where in the distant future we have so polluted and degraded the earth that we simply left the mess behind and lead self-indulgent lives in luxury cruise ships drifting in outer space.
Here’s where the laws of thermodynamics become important. The first law of thermodynamics simply says that you can’t get something for nothing, i.e., there is no free lunch. In other words, the total amount of matter and energy in the universe is constant. But as we saw in Chapter 3, the second law is the most interesting and, in fact, may eventually determine the fate of an advanced civilization. Simply put, the second law of thermodynamics says that the total amount of entropy (disorder or chaos) always increases. This means that all things must pass; objects must rot, decay, rust, age, or fall apart. (We never see total entropy decrease. For example, we never see fried eggs leap from the frying pan and back into the shell. We never see sugar crystals in a cup of coffee suddenly unmix and jump into your spoon. These events are so exceedingly rare that the word “unmix” does not exist in the English—or any other—language.)
So if civilizations of the future blindly produce energy as they rise to a Type II or III civilization, they will create so much waste heat that their home planet will become uninhabitable. Entropy, in the form of waste heat, chaos, and pollution, will essentially destroy their civilization. Similarly, if they produce information by cutting down entire forests and generating mountains of waste paper, the civilization will be buried in its own information waste.
So we have to introduce yet another scale to rank civilizations. We have to introduce two new types of civilizations. The first is an “entropy conserving” civilization, one that uses every means at its disposal to control excess waste and heat. As its energy needs continue to grow exponentially, it realizes that its energy consumption may change the planetary environment, making life impossible. The total disorder or entropy produced by an advanced civilization will continue to soar; that is unavoidable. But local entropy can decrease on their planet if they use nanotechnology and renewable energy to eliminate waste and inefficiency.
The second civilization, an “entropy wasteful” civilization, continues to expand its energy consumption without limit. Eventually, if the home planet becomes uninhabitable, the civilization might try to flee its excesses by expanding to other planets. But the cost of creating colonies in outer space will limit its ability to expand. If its entropy grows faster than its ability to expand to other planets, then it will face disaster.
FROM MASTERS OF NATURE TO CONSERVATORS OF NATURE
As we mentioned earlier, in ancient times we were passive observers of the dance of nature, gazing in wonder at all the mysteries around us. Today, we are like choreographers of nature, able to tweak the forces of nature here and there. And by 2100, we will become masters of nature, able to move objects with our minds, controlling life and death, and reaching for the stars.
But if we become masters of nature, we will also have to become conservators of nature. If we let entropy increase without limit, we will inevitably perish by the laws of thermodynamics. A Type II civilization, by definition, consumes as much energy as a star, and hence the surface temper
ature of the planet will be scorching hot if entropy is allowed to grow unabated. But there are ways to control entropy growth.
For example, when we visit a museum and see the huge steam engines of the nineteenth century, with their enormous boilers and carloads of black coal, we see how inefficient they were, wasting energy and generating enormous amounts of heat and pollution. If we compare them to a silent, sleek electric train, we see how much more efficiently we use energy today. The need for gigantic coal-burning power plants, belching huge amounts of waste heat and pollution into the air, can be vastly reduced if people’s appliances are energy efficient via renewable energy and miniaturization. Nanotechnology gives us the opportunity to reduce waste heat even further as machines are miniaturized to the atomic scale.
Also, if room temperature superconductors are found in this century, it means a complete overhaul of our energy requirements. Waste heat, in the form of friction, will be greatly reduced, increasing the efficiency of our machines. As we mentioned, the majority of our energy consumption, especially transportation, goes into overcoming friction. That is why we put gasoline into our gas tanks, even though it would take almost no energy to move from California to New York if there were no friction. One can imagine that an advanced civilization will be able to perform vastly more tasks with less energy than we use today. This means that we might be able to put numerical limits on the entropy produced by an advanced civilization.
MOST DANGEROUS TRANSITION
The transition between our current Type 0 civilization and a future Type I civilization is perhaps the greatest transition in history. It will determine whether we will continue to thrive and flourish, or perish due to our own folly. This transition is extremely dangerous because we still have all the barbaric savagery that typified our painful rise from the swamp. Peel back the veneer of civilization, and we still see the forces of fundamentalism, sectarianism, racism, intolerance, etc., at work. Human nature has not changed much in the past 100,000 years, except now we have nuclear, chemical, and biological weapons to settle old scores.
However, once we make the transition to a Type I civilization, we will have many centuries to settle our differences. As we saw in earlier chapters, space colonies will continue to be extremely expensive into the future, so it is unlikely that a significant fraction of the world’s population will leave to colonize Mars or the asteroid belt. Until radically new rocket designs bring down the cost or until the space elevator is built, space travel will continue to be the province of governments and the wealthy. For the majority of the earth’s population, this means that they will remain on the planet as we attain Type I status. This also means that we will have centuries to work out our differences as a Type I civilization.
THE SEARCH FOR WISDOM
We live in exciting times. Science and technology are opening up worlds to us that we could previously only dream about. When looking at the future of science, with all its challenges and dangers, I see genuine hope. We will discover more about nature in the coming decades than in all human history combined—many times over.
But it wasn’t always that way.
Consider the words of Benjamin Franklin, America’s last great scientist/statesman, when he made a prediction not just about the next century but about the next thousand years. In 1780, he noted with regret that men often acted like wolves toward one another, mainly because of the grinding burden of surviving in a harsh world.
He wrote:
It is impossible to imagine the height to which may be carried, in a thousand years, the power of man over matter. We may perhaps learn to deprive large masses of their gravity, and give them absolute levity, for the sake of easy transport. Agriculture may diminish its labor and double its produce; all diseases may by sure means be prevented or cured, not excepting even that of old age, and our lives lengthened at pleasure even beyond the antediluvian standard.
He was writing at a time when peasants were scratching a bleak existence from the soil, when ox-drawn carts brought rotting produce to the market, when plagues and starvation were a fact of life, and only the lucky few lived beyond the age of forty. (In London in 1750, two-thirds of children died before they reached the age of five.) Franklin lived in a time when it appeared hopeless that one day we might be able to solve these age-old problems. Or, as Thomas Hobbes wrote in 1651, life was “solitary, poor, nasty, brutish, and short.”
But today, well short of Franklin’s thousand years, his predictions are coming to pass.
This faith—that reason, science, and intellect would one day free us of the oppression of the past—was echoed in the work of the Marquis de Condorcet’s 1795 Sketch for a Historical Picture of the Progress of the Human Mind, which some claim is the most accurate prediction of future events ever written. He made a wide variety of predictions, all of which were quite heretical, but all of which came true. He predicted that the colonies of the New World would eventually break free from Europe and then advance rapidly by benefiting from the technology of Europe. He predicted the end of slavery everywhere. He predicted that farms would greatly increase the amount and quality of the food they produced per acre. He predicted that science would increase rapidly and benefit mankind. He predicted that we would be free of the grind of daily life and have more leisure time. He predicted that birth control would one day be widespread.
In 1795, it seemed hopeless that these predictions would be fulfilled.
Benjamin Franklin and the Marquis de Condorcet both lived in a time when life was short and brutal and science was still in its infancy. Looking back at these predictions, we can fully appreciate the rapid advances made in science and technology, which created enough bounty and wealth to lift billions out of the savagery of the past. Looking back at the world of Franklin and Condorcet, we can appreciate that, of all the creations of humanity, by far the most important has been the creation of science. Science has taken us from the depths of the swamp and lifted us to the threshold of the stars.
But science does not stand still. As we mentioned earlier, by 2100, we shall have the power of the gods of mythology that we once worshipped and feared. In particular, the computer revolution should give us the ability to manipulate matter with our minds, the biotech revolution should give us the ability to create life almost on demand and extend our life span, and the nanotech revolution may give us the ability to change the form of objects and even create them out of nothing. And all this may eventually lead to the creation of a planetary Type I civilization. So the generation now alive is the most important ever to walk the surface of the earth, for we will determine if we will reach a Type I civilization or fall into the abyss.
But science by itself is morally neutral. Science is like a double-edged sword. One side of the sword can cut against poverty, disease, and ignorance. But the other side of the sword can cut against people. How this mighty sword is wielded depends on the wisdom of its handlers.
As Einstein once said, “Science can only determine what is, but not what shall be; and beyond its realm, value judgments remain indispensable.” Science solves some problems, only to create others, but on a higher level.
We saw the raw, destructive side of science during World Wars I and II. The world witnessed in horror how science could bring on ruin and devastation on a scale never seen before, with the introduction of poison gas, the machine gun, firebombings of entire cities, and the atomic bomb. The savagery of the first part of the twentieth century unleashed violence almost beyond comprehension.
But science also allowed humanity to rebuild and rise above the ruin of war, creating even greater peace and prosperity for billions of people. So the true power of science is that it enables us and empowers us—giving us more options. Science magnifies the innovative, creative, and enduring spirit of humanity, as well as our glaring deficiencies.
KEY TO THE FUTURE: WISDOM
The key, therefore, is to find the wisdom necessary to wield this sword of science. As the philosopher Immanuel Kant once said, “Scie
nce is organized knowledge. Wisdom is organized life.” In my opinion, wisdom is the ability to identify the crucial issues of our time, analyze them from many different points of view and perspectives, and then choose the one that carries out some noble goal and principle.
In our society, wisdom is hard to come by. As Isaac Asimov once said, “The saddest aspect of society right now is that science gathers knowledge faster than society gathers wisdom.” Unlike information, it cannot be dispensed via blogs and Internet chatter. Since we are drowning in an ocean of information, the most precious commodity in modern society is wisdom. Without wisdom and insight, we are left to drift aimlessly and without purpose, with an empty, hollow feeling after the novelty of unlimited information wears off.
But where does wisdom come from? In part, wisdom comes from reasoned and informed democratic debate from opposing sides. This debate is often messy, unseemly, and always raucous, but out of the thunder and smoke emerges genuine insight. In our society, this debate emerges in the form of democracy. As Winston Churchill once observed, “Democracy is the worst form of government, except for all the others that have been tried from time to time.”
So democracy is not easy. You have to work at it. George Bernard Shaw once said, “Democracy is a device that ensures we shall be governed no better than we deserve.”
Today, the Internet, with all its faults and excesses, is emerging as a guardian of democratic freedoms. Issues that were once debated behind closed doors are now being dissected and analyzed on a thousand Web sites.