Collapse: How Societies Choose to Fail or Succeed

Home > Other > Collapse: How Societies Choose to Fail or Succeed > Page 23
Collapse: How Societies Choose to Fail or Succeed Page 23

by Jared Diamond


  First, there was not only that enormous Classic collapse, but at least two previous smaller collapses at some sites, one around the year A.D. 150 when El Mirador and some other Maya cities collapsed (the so-called pre-Classic collapse), the other (the so-called Maya hiatus) in the late 6th century and early 7th century, a period when no monuments were erected at the well-studied site of Tikal. There were also some post-Classic collapses in areas whose populations survived the Classic collapse or increased after it—such as the fall of Chichén Itzá around 1250 and of Mayapán around 1450.

  Second, the Classic collapse was obviously not complete, because there were hundreds of thousands of Maya who met and fought the Spaniards—far fewer Maya than during the Classic peak, but still far more people than in the other ancient societies discussed in detail in this book. Those survivors were concentrated in areas with stable water supplies, especially in the north with its cenotes, the coastal lowlands with their wells, near a southern lake, and along rivers and lagoons at lower elevations. However, population otherwise disappeared almost completely in what previously had been the Maya heartland in the south.

  Third, the collapse of population (as gauged by numbers of house sites and of obsidian tools) was in some cases much slower than the decline in numbers of Long Count dates, as I already mentioned for Copán. What collapsed quickly during the Classic collapse was the institution of kingship and the Long Count calendar.

  Fourth, many apparent collapses of cities were really nothing more than “power cycling”: i.e., particular cities becoming more powerful, then declining or getting conquered, and then rising again and conquering their neighbors, without changes in the whole population. For example, in the year 562 Tikal was defeated by its rivals Caracol and Calakmul, and its king was captured and killed. However, Tikal then gradually gained strength again and finally conquered its rivals in 695, long before Tikal joined many other Maya cities in the Classic collapse (last dated Tikal monuments A.D. 869). Similarly, Copán grew in power until the year 738, when its king Waxaklahuun Ub’aah K’awil (a name better known to Maya enthusiasts today by its unforgettable translation of “18 Rabbit”) was captured and put to death by the rival city of Quirigua, but then Copán thrived during the following half-century under more fortunate kings.

  Finally, cities in different parts of the Maya area rose and fell on different trajectories. For example, the Puuc region in the northwest Yucatán Peninsula, after being almost empty of people in the year 700, exploded in population after 750 while the southern cities were collapsing, peaked in population between 900 and 925, and then collapsed in turn between 950 and 1000. El Mirador, a huge site in the center of the Maya area with one of the world’s largest pyramids, was settled in 200 B.C. and abandoned around A.D. 150, long before the rise of Copán. Chichén Itzá in the northern peninsula grew after A.D. 850 and was the main northern center around 1000, only to be destroyed in a civil war around 1250.

  Some archaeologists focus on these five types of complications and don’t want to recognize a Classic Maya collapse at all. But this overlooks the obvious facts that cry out for explanation: the disappearance of between 90 and 99% of the Maya population after A.D. 800, especially in the formerly most densely populated area of the southern lowlands, and the disappearance of kings, Long Count calendars, and other complex political and cultural institutions. That’s why we talk about a Classic Maya collapse, a collapse both of population and of culture that needs explaining.

  Two other phenomena that I have mentioned briefly as contributing to Maya collapses require more discussion: the roles of warfare and of drought.

  Archaeologists for a long time believed the ancient Maya to be gentle and peaceful people. We now know that Maya warfare was intense, chronic, and unresolvable, because limitations of food supply and transportation made it impossible for any Maya principality to unite the whole region in an empire, in the way that the Aztecs and Incas united Central Mexico and the Andes, respectively. The archaeological record shows that wars became more intense and frequent towards the time of the Classic collapse. That evidence comes from discoveries of several types over the last 55 years: archaeological excavations of massive fortifications surrounding many Maya sites; vivid depictions of warfare and captives on stone monuments, vases (Plate 14), and on the famous painted murals discovered in 1946 at Bonampak; and the decipherment of Maya writing, much of which proved to consist of royal inscriptions boasting of conquests. Maya kings fought to take one another captive, one of the unfortunate losers being Copán’s King 18 Rabbit. Captives were tortured in unpleasant ways depicted clearly on the monuments and murals (such as yanking fingers out of sockets, pulling out teeth, cutting off the lower jaw, trimming off the lips and fingertips, pulling out the fingernails, and driving a pin through the lips), culminating (sometimes several years later) in the sacrifice of the captive in other equally unpleasant ways (such as tying the captive up into a ball by binding the arms and legs together, then rolling the balled-up captive down the steep stone staircase of a temple).

  Maya warfare involved several well-documented types of violence: wars between separate kingdoms; attempts of cities within a kingdom to secede by revolting against the capital; and civil wars resulting from frequent violent attempts by would-be kings to usurp the throne. All of these types were described or depicted on monuments, because they involved kings and nobles. Not considered worthy of description, but probably even more frequent, were fights between commoners over land, as overpopulation became excessive and as land became scarce.

  The other phenomenon important to understanding Maya collapses is the repeated occurrence of droughts, studied especially by Mark Brenner, David Hodell, the late Edward Deevey, and their colleagues at the University of Florida, and discussed in a recent book by Richardson Gill. Cores bored into layers of sediments at the bottoms of Maya lakes yield many measurements that let us infer droughts and environmental changes. For example, gypsum (a.k.a. calcium sulfate) precipitates out of solution in a lake into sediments when lake water becomes concentrated by evaporation during a drought. Water containing the heavy form of oxygen known as the isotope oxygen-18 also becomes concentrated during droughts, while water containing the lighter isotope oxygen-16 evaporates away. Molluscs and crustacea living in the lake take up oxygen to lay down in their shells, which remain preserved in the lake sediments, waiting for climatologists to analyze for those oxygen isotopes long after the little animals have died. Radiocarbon dating of a sediment layer identifies the approximate year when the drought or rainfall conditions inferred from those gypsum and oxygen isotope measurements were prevailing. The same lake sediment cores provide palynologists with information about deforestation (which shows up as a decrease in pollen from forest trees at the expense of an increase in grass pollen), and also soil erosion (which shows up as a thick clay deposit and minerals from the washed-down soil).

  Based on these studies of radiocarbon-dated layers from lake sediment cores, climatologists and paleoecologists conclude that the Maya area was relatively wet from about 5500 B.C. until 500 B.C. The following period from 475 to 250 B.C., just before the rise of pre-Classic Maya civilization, was dry. The pre-Classic rise may have been facilitated by the return of wetter conditions after 250 B.C., but then a drought from A.D. 125 until A.D. 250 was associated with the pre-Classic collapse at El Mirador and other sites. That collapse was followed by the resumption of wetter conditions and of the buildup of Classic Maya cities, temporarily interrupted by a drought around A.D. 600 corresponding to a decline at Tikal and some other sites. Finally, around A.D. 760 there began the worst drought in the last 7,000 years, peaking around the year A.D. 800, and suspiciously associated with the Classic collapse.

  Careful analysis of the frequency of droughts in the Maya area shows a tendency for them to recur at intervals of about 208 years. Those drought cycles may result from small variations in the sun’s radiation, possibly made more severe in the Maya area as a result of the rainfall gradient in the
Yucatán (drier in the north, wetter in the south) shifting southwards. One might expect those changes in the sun’s radiation to affect not just the Maya region but, to varying degrees, the whole world. In fact, climatologists have noted that some other famous collapses of prehistoric civilizations far from the Maya realm appear to coincide with the peaks of those drought cycles, such as the collapse of the world’s first empire (the Akkadian Empire of Mesopotamia) around 2170 B.C., the collapse of Moche IV civilization on the Peruvian coast around A.D. 600, and the collapse of Tiwanaku civilization in the Andes around A.D. 1100.

  In the most naïve form of the hypothesis that drought contributed to causing the Classic collapse, one could imagine a single drought around A.D. 800 uniformly affecting the whole realm and triggering the fall of all Maya centers simultaneously. Actually, as we have seen, the Classic collapse hit different centers at slightly different times in the period A.D. 760-910, while sparing other centers. That fact makes many Maya specialists skeptical of a role of drought.

  But a properly cautious climatologist would not state the drought hypothesis in that implausibly oversimplied form. Finer-resolution variation in rainfall from one year to the next can be calculated from annually banded sediments that rivers wash into ocean basins near the coast. These yield the conclusion that “The Drought” around A.D. 800 actually had four peaks, the first of them less severe: two dry years around A.D. 760, then an even drier decade around A.D. 810-820, three drier years around A.D. 860, and six drier years around A.D. 910. Interestingly, Richardson Gill concluded, from the latest dates on stone monuments at various large Maya centers, that collapse dates vary among sites and fall into three clusters: around A.D. 810, 860, and 910, in agreement with the dates for the three most severe droughts. It would not be at all surprising if a drought in any given year varied locally in its severity, hence if a series of droughts caused different Maya centers to collapse in different years, while sparing centers with reliable water supplies such as cenotes, wells, and lakes.

  The area most affected by the Classic collapse was the southern lowlands, probably for the two reasons already mentioned: it was the area with the densest population, and it may also have had the most severe water problems because it lay too high above the water table for water to be obtained from cenotes or wells when the rains failed. The southern lowlands lost more than 99% of their population in the course of the Classic collapse. For example, the population of the Central Petén at the peak of the Classic Maya period is variously estimated at between 3,000,000 and 14,000,000 people, but there were only about 30,000 people there at the time that the Spanish arrived. When Cortés and his Spanish army passed through the Central Petén in 1524 and 1525, they nearly starved because they encountered so few villages from which to acquire corn. Cortés passed within a few miles of the ruins of the great Classic cities of Tikal and Palenque, but he heard or saw nothing of them because they were covered by jungle and almost nobody was living in the vicinity.

  How did such a huge population of millions of people disappear? We asked ourselves that same question about the disappearance of Chaco Canyon’s (admittedly smaller) Anasazi population in Chapter 4. By analogy with the cases of the Anasazi and of subsequent Pueblo Indian societies during droughts in the U.S. Southwest, we infer that some people from the southern Maya lowlands survived by fleeing to areas of the northern Yucatán endowed with cenotes or wells, where a rapid population increase took place around the time of the Maya collapse. But there is no sign of all those millions of southern lowland inhabitants surviving to be accommodated as immigrants in the north, just as there is no sign of thousands of Anasazi refugees being received as immigrants into surviving pueblos. As in the U.S. Southwest during droughts, some of that Maya population decrease surely involved people dying of starvation or thirst, or killing each other in struggles over increasingly scarce resources. The other part of the decrease may reflect a slower decrease in the birthrate or child survival rate over the course of many decades. That is, depopulation probably involved both a higher death rate and a lower birth rate.

  In the Maya area as elsewhere, the past is a lesson for the present. From the time of Spanish arrival, the Central Petén’s population declined further to about 3,000 in A.D. 1714, as a result of deaths from diseases and other causes associated with Spanish occupation. By the 1960s, the Central Petén’s population had risen back only to 25,000, still less than 1% of what it had been at the Classic Maya peak. Thereafter, however, immigrants flooded into the Central Petén, building up its population to about 300,000 in the 1980s, and ushering in a new era of deforestation and erosion. Today, half of the Petén is once again deforested and ecologically degraded. One-quarter of all the forests of Honduras were destroyed between 1964 and 1989.

  To summarize the Classic Maya collapse, we can tentatively identify five strands. I acknowledge, however, that Maya archaeologists still disagree vigorously among themselves—in part, because the different strands evidently varied in importance among different parts of the Maya realm; because detailed archaeological studies are available for only some Maya sites; and because it remains puzzling why most of the Maya heartland remained nearly empty of population and failed to recover after the collapse and after regrowth of forests.

  With those caveats, it appears to me that one strand consisted of population growth outstripping available resources: a dilemma similar to the one foreseen by Thomas Malthus in 1798 and being played out today in Rwanda (Chapter 10), Haiti (Chapter 11), and elsewhere. As the archaeologist David Webster succinctly puts it, “Too many farmers grew too many crops on too much of the landscape.” Compounding that mismatch between population and resources was the second strand: the effects of deforestation and hillside erosion, which caused a decrease in the amount of useable farmland at a time when more rather than less farmland was needed, and possibly exacerbated by an anthropogenic drought resulting from deforestation, by soil nutrient depletion and other soil problems, and by the struggle to prevent bracken ferns from overrunning the fields.

  The third strand consisted of increased fighting, as more and more people fought over fewer resources. Maya warfare, already endemic, peaked just before the collapse. That is not surprising when one reflects that at least 5,000,000 people, perhaps many more, were crammed into an area smaller than the state of Colorado (104,000 square miles). That warfare would have decreased further the amount of land available for agriculture, by creating no-man’s lands between principalities where it was now unsafe to farm. Bringing matters to a head was the strand of climate change. The drought at the time of the Classic collapse was not the first drought that the Maya had lived through, but it was the most severe. At the time of previous droughts, there were still uninhabited parts of the Maya landscape, and people at a site affected by drought could save themselves by moving to another site. However, by the time of the Classic collapse the landscape was now full, there was no useful unoccupied land in the vicinity on which to begin anew, and the whole population could not be accommodated in the few areas that continued to have reliable water supplies.

  As our fifth strand, we have to wonder why the kings and nobles failed to recognize and solve these seemingly obvious problems undermining their society. Their attention was evidently focused on their short-term concerns of enriching themselves, waging wars, erecting monuments, competing with each other, and extracting enough food from the peasants to support all those activities. Like most leaders throughout human history, the Maya kings and nobles did not heed long-term problems, insofar as they perceived them. We shall return to this theme in Chapter 14.

  Finally, while we still have some other past societies to consider in this book before we switch our attention to the modern world, we must already be struck by some parallels between the Maya and the past societies discussed in Chapters 2-4. As on Easter Island, Mangareva, and among the Anasazi, Maya environmental and population problems led to increasing warfare and civil strife. As on Easter Island and at Chaco Canyon, Maya pe
ak population numbers were followed swiftly by political and social collapse. Paralleling the eventual extension of agriculture from Easter Island’s coastal lowlands to its uplands, and from the Mimbres floodplain to the hills, Copán’s inhabitants also expanded from the floodplain to the more fragile hill slopes, leaving them with a larger population to feed when the agricultural boom in the hills went bust. Like Easter Island chiefs erecting ever larger statues, eventually crowned by pukao, and like Anasazi elite treating themselves to necklaces of 2,000 turquoise beads, Maya kings sought to outdo each other with more and more impressive temples, covered with thicker and thicker plaster—reminiscent in turn of the extravagant conspicuous consumption by modern American CEOs. The passivity of Easter chiefs and Maya kings in the face of the real big threats to their societies completes our list of disquieting parallels.

  CHAPTER 6

  The Viking Prelude and Fugues

  Experiments in the Atlantic ■ The Viking explosion ■ Autocatalysis ■ Viking agriculture ■ Iron ■ Viking chiefs ■ Viking religion ■ Orkneys, Shetlands, Faeroes ■ Iceland’s environment ■ Iceland’s history ■ Iceland in context ■ Vinland ■

  When moviegoers of my generation hear the word “Vikings,” we picture chieftain Kirk Douglas, star of the unforgettable 1958 epic film The Vikings, clad in his nail-studded leather shirt as he leads his bearded barbarians on voyages of raiding, raping, and killing. Nearly half a century after watching that film on a date with a college girlfriend, I can still replay in my imagination the opening scene in which Viking warriors batter down a castle gate while its unsuspecting occupants carouse inside, the occupants scream as the Vikings burst in and slaughter them, and Kirk Douglas begs his beautiful captive Janet Leigh to heighten his pleasure by vainly attempting to resist him. There is much truth to those gory images: the Vikings did indeed terrorize medieval Europe for several centuries. In their own language (Old Norse), even the word vikingar meant “raiders.”

 

‹ Prev