The Design and Engineering of Curiosity

Home > Other > The Design and Engineering of Curiosity > Page 40
The Design and Engineering of Curiosity Page 40

by Emily Lakdawalla


  9.5.3 SAM on Mars

  The SAM experiment has been highly successful. SAM has measured the composition of past and present Martian air and monitored it over time. It has successfully measured isotopes of even the rarest noble gas, xenon. It has detected low-molecular-weight organic compounds of Martian origin. It has detected methane and observed rapid changes in atmospheric methane abundance. SAM has been used for an experiment never before conducted in space, to perform potassium-argon dating to measure the ages of drilled rocks. Even the problem of the MTBSTFA contamination has been turned into a benefit, with the performance of long-term derivatization experiments.

  The complexity of SAM experiments and the amount of power they require drive a lot of the supratactical planning on Curiosity. A typical evolved-gas analysis can take three sols (one for preconditioning, one for sample preparation and delivery, and one for heating and evolved gas analysis). The evolved gas analysis usually takes 4 to 6 hours to run to completion, depending on the selected options, and it can leave the rover with a relatively low state of battery charge. For that reason it is common to conduct SAM experiments over weekends and use one weekend sol to recharge batteries.

  As of the time of Curiosity’s second extended mission proposal in January 2016, SAM had 75% of its helium supply left, but the pumps were nearing their design lifetime. Duplicates of the pumps on Earth have been tested to survive twice their design lifetime. So, barring any unforeseen events, SAM should have considerable life left. The SAM team is carefully rationing use of the pumps to ensure that they will still be working when the rover reaches the clay-rich layers beyond Vera Rubin Ridge. Usage of the cups and experiments run to date are summarized in Figure 9.24 and Table 9.6, respectively.

  Figure 9.24. Schematic diagram of the SAM sample carousel, showing the locations of the numbered cups of different types, and which ones have been used as of sol 1800. For the identities of samples in each used cup, refer to Table 9.6 . Data courtesy Charles Malespin.

  Table 9.6. Summary of the SAM solid sample experiments.

  Type of run

  Sample

  Sol #

  Cup #

  GC Hydrocarbon temp cut(°C)

  GCMS

  Blank (Rocknest)

  88

  15

  145 - 529

  GCMS

  Rocknest

  93

  15

  145 - 529

  GCMS

  Rocknest

  96

  13

  97 - 422

  GCMS

  Rocknest

  99

  11

  529 - 816

  GCMS

  Rocknest

  171

  7

  242 - 383

  GCMS

  Blank (John Klein)

  177

  23

  311 - 816

  GCMS

  John Klein

  196

  23

  311 - 816

  GCMS

  John Klein

  199

  25

  242 - 639

  GCMS

  John Klein

  224

  27

  242 - 639

  GCMS

  John Klein

  227

  29

  570 - 792

  GCMS

  Blank (Cumberland)

  276

  33

  442 - 569

  GCMS

  Cumberland

  281

  33

  442 - 569

  GCMS

  Cumberland

  286

  35

  571 - 792

  GCMS

  Cumberland

  290

  39

  226 - 347

  NG geochronology

  Cumberland

  353

  41

  n/a

  GCMS

  Cumberland

  367

  51

  226 - 347

  GCMS

  Cumberland

  381

  45

  226 - 347

  GCMS

  Cumberland

  394

  45

  226 - 347

  NG geochronology

  Blank (Cumberland)

  408

  47

  n/a

  GCMS

  Cumberland

  415

  47

  247 - 620

  GCMS

  Blank (Cumberland)

  421

  31

  247 - 620

  NG geochronology

  Blank (Cumberland)

  428

  53

  n/a

  GCMS

  Blank (Windjana)

  602

  10

  20 - max

  GCMS

  Windjana

  624

  10

  20 - max

  NG geochronology

  Windjana

  653

  12

  n/a

  NG geochronology

  Windjana reheat

  685

  12

  n/a

  NG geochronology

  Windjana doggy bag

  763

  14

  n/a

  GCMS

  Blank (Confidence Hills)

  769

  60

  386 - max

  GCMS

  Confidence Hills

  773

  60

  386 - max

  GCMS

  Cumberland doggy bag (opportunistic derivatization)

  822

  51

  20 - max

  GCMS

  Cumberland doggy bag (opportunistic derivatization)

  823

  51

  20 - max

  GCMS

  GC clean

  835

  51

  n/a

  GCMS

  Blank (Cumberland)

  837

  45

  20 - 550

  GCMS

  Blank (Cumberland)

  839

  45

  20 - max

  GCMS

  Mojave

  887

  62

  200 - max

  EGA

  Telegraph Peak

  928

  66

  n/a

  GCMS

  GC clean

  981

  n/a

  n/a

  GCMS

  GC clean

  998

  n/a

  n/a

  GCMS

  GC clean

  1071

  n/a

  n/a

  GCMS

  Buckskin

  1076

  24

  150 - 300, 450 - 550, 650 - max

  GCMS

  GC clean

  1117

  n/a

  n/a

  EGA

  Big Sky

  1130

  26

  n/a

  EGA

  Greenhorn

  1147

  26

  n/a

  GCMS

  Blank (Greenhorn)

  1171

  68

  560 - 713, 780 - 830

  GCMS

  Greenhorn

  1178

  68

  376 - 562, 714 - 921

  EGA

  Gobabeb <150um

  1224

  28

  n/a

  EGA

  Gobabeb >150um

  1237

  30

  n/a

  GCMS

  GC clean

  1246

  n/a

  n/a

  GCMS

  Calibration cup

  1286

  20

  n/a

  EGA

  Oudam

  1382


  22

  n/a

  NG geochronology

  Mojave stepped heating part 1

  1402

  64

  n/a

  NG geochronology

  Mojave stepped heating part 2

  1403

  64

  n/a

  NG geochronology

  Mojave doggy bag stepped heating part 1

  1429

  62

  n/a

  NG geochronology

  Mojave doggy bag stepped heating part 2

  1430

  62

  n/a

  EGA

  Marimba

  1443

  32

  n/a

  GCMS

  GC clean

  1539

  n/a

  n/a

  GCMS

  Cumberland doggy bag (opportunistic derivatization)

  1543

  39

  20 - 500

  GCMS

  Cumberland doggy bag (opportunistic derivatization)

  1546

  39

  20 - max

  GCMS

  GC clean

  1580

  n/a

  n/a

  Doggy bag

  Oudam

  –

  22

  n/a

  Doggy bag

  Marimba

  –

  32

  n/a

  Doggy bag

  Cumberland

  –

  33

  n/a

  Doggy bag

  Quela

  –

  62

  n/a

  Doggy bag

  Quela

  –

  64

  n/a

  Doggy bag

  Telegraph Peak

  –

  66

  n/a

  REFERENCES

  Atreya S et al (2013) Primordial argon isotope fractionation in the atmosphere of Mars measured by the SAM instrument on Curiosity and implications for atmospheric loss. Geophys. Res. Lett. 40:5605–5609, DOI: 10.1002/2013GL057763

  Berger J et al (2014) MSL-APXS titanium observation tray measurements: Laboratory experiments and results for the Rocknest fines at the Curiosity field site in Gale Crater, Mars. J Geophys Res 119:1046–1060, DOI: 10.1002/2013JE004519

  Berger J et al (2016) A global Mars dust composition refined by the Alpha-Particle X-ray Spectrometer in Gale Crater. Geophys Res Lett 43:67–75, DOI: 10.1002/2015GL066675

  Blake D et al (2012) Characterization and calibration of the CheMin mineralogical instrument on Mars Science Laboratory. Space Sci Rev 170:341–399, DOI: 10.1007/s11214-012-9905-1

  Campbell et al (2012) Calibration of the Mars Science Laboratory Alpha Particle X-ray Spectrometer. Space Sci Rev 170:319–340, DOI 10.1007/s11214-012-9873-5

  Conrad P et al (2016) In situ measurement of atmospheric krypton and xenon on Mars with Mars Science Laboratory. Earth Planet Sci Lett 454:1–9, DOI: 10.1016/j.epsl.2016.08.028

  Cousin A et al (2014) ChemCam blind targets: a helpful way of analyzing soils and rocks along the traverse. Paper presented at the 45th Lunar and Planetary Science Conference, The Woodlands, Texas, 17–21 Mar 2014

  Dickinson C S et al (2012) APXS on Mars Science Laboratory - First results from post-landing checkout. Presentation to the International Workshop on Instrumentation for Planetary Missions, Greenbelt, Maryland, USA 10–12 Oct 2012

  Downs R and the MSL Science Team (2015) Determining mineralogy on Mars with the CheMin X-ray diffractometer. Elements 11:45–50, DOI: 10.2113/gselements.11.1.45

  Farley K et al (2014) In situ radiometric and exposure age dating of the Martian surface. Science, DOI: 10.1126/science.1247166

  Francis R et al (2016) AEGIS intelligent targeting deployed for the Curiosity rover’s ChemCam instrument. Paper presented at the 47th Lunar and Planetary Science Conference, The Woodlands, Texas, 21–25 Mar 2016

  Francis R et al (2017) AEGIS autonomous targeting for ChemCam on MSL: Results from the first 220 sols of routine science operations. Paper presented at the 48th Lunar and Planetary Science Conference, The Woodlands, Texas, 20–24 Mar 2017

  Franz H et al (2017) Initial SAM calibration gas experiments on Mars: Quadrupole mass spectrometer results and implications. Pl Space Sci 138:44–54, DOI: 10.1016/j.pss.2017.01.014

  Gellert R et al (2009) The Alpha-Particle-X-ray-Spectrometer (APXS) for the Mars Science Laboratory (MSL) rover mission. Paper presented at the 40th Lunar and Planetary Science Conference, The Woodlands, Texas, 23–27 Mar 2009

  Gellert R et al (2015) In Situ Compositional Measurements of Rocks and Soils with the Alpha Particle X-ray Spectrometer on NASA’s Mars Rovers. Elements 11:39–44, DOI: 10.2113/gselements.11.1.39

  JPL (2009) Sample Analysis at Mars. https://​msl-scicorner.​jpl.​nasa.​gov/​Instruments/​SAM/​ Accessed 29 Apr 2016.

  Lakdawalla E (2013) DPS 2013: Confusing Curiosity SAM results. http://​www.​planetary.​org/​blogs/​emily-lakdawalla/​2013/​10151336-dps-2013-confusing-curiosity.​html Article dated 15 Oct 2013, accessed 12 Apr 2017

  Lanza N et al (2016) Oxidation of manganese in an ancient aquifer, Kimberley formation, Gale crater, Mars. Geo. Res. Lett. 43:7398–7407, DOI: 10.1002/2016GL069109

  Léveillé et al (2015) Jarosite in Gale crater, Mars: The importance of temporal and spatial variability and implications for habitability. Paper presented at the 46th Lunar and Planetary Science Conference, The Woodlands, Texas, 16–20 Mar 2015

  Mahaffy P et al (2012) The Sample Analysis at Mars investigation and instrument suite. Space Sci Rev 170:401–478, DOI: 10.1007/s11214-012-9879-z

  Mahaffy P et al (2013) Abundance and isotopic composition of gases in the Martian atmosphere from the Curiosity rover (supplementary materials). Science DOI: 10.1126/science.1237966

  Maurice S et al (2012) The ChemCam instrument suite on the Mars Science Laboratory (MSL) rover: science objectives and mast unit description. Space Sci Rev 170:95–166, DOI: 10.1007/s11214-012-9902-4

  Maurice S et al (2016) ChemCam activities and discoveries during the nominal mission of the Mars Science Laboratory in Gale crater, Mars. J. Anal. At. Spectrom. 31:863–889, DOI: 10.1039/C5JA00417A

  Millan M et al (2016) In situ analysis of Martian regolith with the SAM experiment during the first Mars year of the MSL mission: Identification of organic molecules by gas chromatography from laboratory measurements. Pl Space Sci 129:88–102, DOI: 10.1016/j.pss.2016.06.007

  Morris R et al (2016) Silicic volcanism on Mars evidenced by tridymite in high-SiO2 sedimentary rock at Gale crater. PNAS 113:7071–7076, DOI: 10.1073/pnas.1607098113

  Ollila A et al (2014) Trace element geochemistry (Li, Ba, Sr, and Rb) using Curiosity’s ChemCam: Early results for Gale crater from Bradbury Landing Site to Rocknest. J. Geophys. Res. Planets 119:255–285, DOI: 10.1002/2013JE004517

  Peret L et al (2016) Restoration of the autofocus capability of the ChemCam instrument onboard the Curiosity rover. Paper presented at the 14th International Conference on Space Operations, Daejeon, Korea, 16–20 May 2016

  Perrett G et al (2017) Dust modelling on Martian rock surfaces studied by the Mars Science Laboratory Alpha Particle X-ray Spectrometer. Paper presented at the 48th Lunar and Planetary Science Conference, The Woodlands, Texas, 20–24 Mar 2017

  Peters S et al (2016) Celestial aspects of Mars Science Laboratory ChemCam sun-safety. Paper presented at the 39th Annual AAS Guidance & Control Conference, Breckenridge, Colorado, 5–10 Feb 2016.

  Schmidt M et al (2016) APXS classification of lower Mount Sharp bedrock: Silica enrichment and acid alteration. Paper presented at the 47th Lunar and Planetary Science Conference, The Woodlands, Texas, 21–25 Mar 2016

  Slavney S (2013) Alpha Particle X-ray Spectrometer instrument information. In Mars Science Laboratory (MSL) APXS EDR Data Archive.

  Thompson L et al (2016) Potassium-rich sandstones within the Gale impact crater, Mars: T
he APXS perspective. J. Geophys. Res. 121:1981–2003, DOI: 10.1002/2016JE005055

  Treiman et al (2016) Mineralogy, provenance, and diagenesis of a potassic basaltic sandstone on Mars: CheMin X-ray diffraction of the Windjana sample (Kimberley area, Gale Crater). J. Geophys. Res. Planets, 121:75–106, DOI: 10.1002/2015JE004932

  Vaniman D et al (2014) Mineralogy of a mudstone at Yellowknife Bay, Gale Crater, Mars. Science, DOI: 10.1126/science.1243480

  Webster C et al (2014) Mars methane detection and variability at Gale crater (supplementary materials). Science DOI: 10.1126/science.1261713

  Wiens R et al (2012) The ChemCam Instrument Suite on the Mars Science Laboratory (MSL) Rover: Body Unit and Combined System Tests. SSR 170:167–227, DOI: 10.1007/s11214-012-9912-2

  Footnotes

  1Two papers published before the mission described ChemCam: Maurice et al. (2012) and Wiens et al. (2012)

  2Peret et al. (2016)

  3Roger Wiens, personal communication, email dated March 14, 2016

 

‹ Prev