Mind in Motion

Home > Other > Mind in Motion > Page 30
Mind in Motion Page 30

by Barbara Tversky


  Figure 8.11. Source: Agrawala, M., Phan, D., Heiser, J., Haymaker, J., Klingner, J., Hanrahan, P., & Tversky, B. (2003, July). Designing effective step-by-step assembly instructions. ACM Transactions on Graphics (TOG), 22(3), 828–837.

  Figure 8.12. Source: Diderot’s L’Encyclopédie (1762). Retrieved from https://commons.wikimedia.org/wiki/File:Defehrt_epinglier_pl2.jpg

  Figure 8.13. Source: Tversky, B., & Lee, P. (1999). Pictorial and verbal tools for conveying routes. In C. Freksa & D. M. Mark (Eds.), Spatial information theory. Cognitive and computational foundations of geographic information science. Lecture Notes in Computer Science (Vol. 1661). Berlin, Germany: Springer, Berlin, Heidelberg.

  Figure 8.14. Source: Fibonacci. Retrieved from https://en.wikipedia.org/wiki/Illusory_contours#/media/File:Kanizsa_triangle.svg

  Figure 8.15. Source: Zacks, J., & Tversky, B. (1999). Bars and lines: A study of graphic communication. Memory & Cognition, 27(6), 1073–1079.

  Figure 8.17. Source: Heiser, J., & Tversky, B. (2006). Arrows in comprehending and producing mechanical diagrams. Cognitive Science, 30(3), 581–592.

  Figure 8.18. Visual notes courtesy of Yoon Bahk. Photo courtesy of Andrea Kantrowitz.

  Figure 8.19. Courtesy of Chicago Tribune and estate of Frank O. King. Retrieved from http://www.mascontext.com/issues/20-narrative-winter-13/comics-and-architecture-comics-in-architecture-a-not-so-short-recount-of-the-interactions-between-architecture-and-graphic-narrative-1/

  Figure 8.20. Source: McCay, W. (c. 1913). Seite des Comicstrips Little Nemo in Slumberland. Retrieved from https://commons.wikimedia.org/wiki/File:Little_nemo_the_walking_bed.jpg

  Figure 8.21. Source: McCay, W. (1905, September 24). Little Sammy Sneeze comic strip. Retrieved from https://commons.wikimedia.org/w/index.php?curid=30363015

  Figure 8.22. Source: Carlin, J., Karasik, P., & Walker, B. (Eds.). (2005). Masters of American comics. Los Angeles, CA: Hammer Museum and the Museum of Contemporary Art, Los Angeles, in association with Yale University Press.

  Figure 9.1. Source: Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning. Cognitive Research: Principles and Implications, 1(1), 27.

  Figure 9.2. Source: Bobek, E., & Tversky, B. (2016). Creating visual explanations improves learning. Cognitive Research: Principles and Implications, 1(1), 27.

  Figure 9.3. Source: Suwa, M., & Tversky, B. (1997). What do architects and students perceive in their design sketches? A protocol analysis. Design Studies, 18(4), 385–403.

  Figure 9.4. Source: Suwa, M., & Tversky, B. (2003). Constructive perception: A metacognitive skill for coordinating perception and conception. Proceedings of the Annual Meeting of the Cognitive Science Society, 25(25).

  All photos in Chapter Ten are courtesy of the author.

  Bibliographic Notes

  CHAPTER ONE: THE SPACE OF THE BODY: SPACE IS FOR ACTION

  Cortical regions selectively activated by objects, faces, and bodies

  Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536–548.

  Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163–11170.

  Weiner, K. S., & Grill-Spector, K. (2013). Neural representations of faces and limbs neighbor in human high-level visual cortex: Evidence for a new organization principle. Psychological Research, 77(1), 74–97.

  Best views of objects

  Palmer, S., Rosch, E., & Chase, P. (1981). Canonical perspective and the perception of objects. In J. B. Long & A. D. Baddeley (Eds.), Attention and performance, IX. Hillsdale, NJ: Erlbaum.

  Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology: General, 113(2), 169.

  Homunculus

  Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E., & Herculano Houzel, S. (2009). Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal of Comparative Neurology, 513(5), 532–541.

  Specialized individual neurons

  Perrett, D. I., Harries, M. H., Bevan, R., Thomas, S., Benson, P. J., Mistlin, A. J.… Ortega, J. E. (1989). Frameworks of analysis for the neural representation of animate objects and actions. Journal of Experimental Biology, 146(1), 87–113.

  Names more abstract than depictions

  Morrison, J. B., & Tversky, B. (2005). Bodies and their parts. Memory & Cognition, 33, 696–709.

  Figurative uses of parts of object

  Lakoff, G., & Johnson, M. (2008). Metaphors we live by. Chicago: University of Chicago Press.

  Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology: General, 113(2), 169.

  Development of babies’ brains

  Bremner, A. J., Lewkowicz, D. J., & Spence, C. (2012). Multisensory development. Oxford, England: Oxford University Press.

  Eliot, L. (1999). What’s going on in there? How the brain and mind develop in the first five years of life. New York, NY: Bantam Books.

  Posner, M. I., & Rothbart, M. K. (2007). Educating the human brain. Washington, DC: American Psychological Association.

  Distorting lenses

  Mack, A., & Rock, I. (1968). A re-examination of the Stratton effect: Egocentric adaptation to a rotated visual image. Perception & Psychophysics, 4(1), 57–62.

  Stratton, G. M. (1897). Vision without inversion of the retinal image. Psychological Review, 4, 341–360, 463–481.

  Tool use enlarges body schema

  Maravita, A., & Iriki, A. (2004). Tools for the body (schema). Trends in Cognitive Sciences, 8(2), 79–86.

  Martel, M., Cardinali, L., Roy, A. C., & Farnè, A. (2016). Tool-use: An open window into body representation and its plasticity. Cognitive Neuropsychology, 33(1–2), 82–101.

  Quallo, M. M., Price, C. J., Ueno, K., Asamizuya, T., Cheng, K., Lemon, R. N., & Iriki, A. (2009). Gray and white matter changes associated with tool-use learning in macaque monkeys. Proceedings of the National Academy of Sciences, 106(43), 18379–18384.

  Ownership of rubber hands

  Beauchamp, M. S. (2005). See me, hear me, touch me: Multisensory integration in lateral occipital-temporal cortex. Current Opinion in Neurobiology, 15(2), 145–153.

  Botvinick, M., & Cohen, J. (1998). Rubber hands “feel” touch that eyes see. Nature, 391(6669), 756.

  Ehrsson, H. H., Wiech, K., Weiskopf, N., Dolan, R. J., & Passingham, R. E. (2007). Threatening a rubber hand that you feel is yours elicits a cortical anxiety response. Proceedings of the National Academy of Sciences, 104(23), 9828–9833.

  Babies’ understanding of goal-directed behavior

  Falck-Ytter, T., Gredebäck, G., & von Hofsten, C. (2006). Infants predict other people’s action goals. Nature Neuroscience, 9(7), 878–879.

  Sommerville, J. A., & Woodward, A. L. (2005). Pulling out the intentional structure of action: The relation between action processing and action production in infancy. Cognition, 95(1), 1–30.

  Sommerville, J. A., Woodward, A. L., & Needham, A. (2005). Action experience alters 3-month-old infants’ perception of others’ actions. Cognition, 96(1), B1–B11.

  Mirror neurons

  Rizzolatti, G. (2005). The mirror neuron system and imitation. Perspectives on Imitation: Mechanisms of Imitation and Imitation in Animals, 1, 55.

  Rizzolatti, G., Fadiga, L., Gallese, V., & Fogassi, L. (1996). Premotor cortex and the recognition of motor actions. Cognitive Brain Research, 3(2), 131–141.

  Motor resonance

  Fadiga, L., Craighero, L., & Olivier, E. (2005). Human motor cortex excitability during the perception of others’ action. Current Opinion in Neurobiology, 15(2), 213–218.

  Iacoboni, M. (2009). Imitation, empathy, and mirror neurons. Annual Review of Psychology, 60, 653–670.

  Iaco
boni, M. (2009). Mirroring people: The science of empathy and how we connect with others. New York, NY: Picador.

  Mirror neurons in humans

  Mukamel, R., Ekstrom, A. D., Kaplan, J., Iacoboni, M., & Fried, I. (2010). Single-neuron responses in humans during execution and observation of actions. Current Biology, 20, 750–756.

  Children detect animacy from motion paths

  Gelman, R., Durgin, F., & Kaufman, L. (1996). Distinguishing between animates and inanimates: Not by motion alone. In D. Sperber, D. Premack, & A. J. Premack (Eds.), Causal Cognition: A Multidisciplinary Debate (pp. 150–184). Oxford, England: Clarendon Press.

  Brains of experts more reactive to viewed action

  Calvo-Merino, B., Glaser, D. E., Grezes, J., Passingham, R. E., & Haggard, P. (2005). Action observation and acquired motor skills: An FMRI study with expert dancers. Cerebral Cortex, 15(8), 1243–1249.

  Players better than coaches at predicting free throw success

  Aglioti, S. M., Cesari, P., Romani, M., & Urgesi, C. (2008). Action anticipation and motor resonance in elite basketball players. Nature Neuroscience, 11(9), 1109–1116.

  Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psychological research on joint action: Theory and data. Psychology of Learning and Motivation, 54, 59–101.

  Understanding action from lights on moving joints

  Johansson, G. (1973). Visual perception of biological motion and a model for its analysis. Perception & Psychophysics, 14(2), 201–211.

  Kozlowski, L. T., & Cutting, J. E. (1977). Recognizing the sex of a walker from a dynamic point-light display. Perception & Psychophysics, 21(6), 575–580.

  Recognition of self from viewed action better than recognition of others

  Loula, F., Prasad, S., Harber, K., & Shiffrar, M. (2005). Recognizing people from their movement. Journal of Experimental Psychology: Human Perception and Performance, 31, 210.

  Synchronizing action with others

  Neda, Z., Ravasz, E., Brechte, Y., Vicsek, T., & Barabasi, A.-L. (2000). The sound of many hands clapping. Nature, 403, 849–850.

  van Ulzen, N. R., Lamoth, C. J., Daffertshofer, A., Semin, G. R., & Beek, P. J. (2008). Characteristics of instructed and uninstructed interpersonal coordination while walking side-by-side. Neuroscience Letters, 432(2), 88–93.

  Cooperation across species

  Daura-Jorge, F. G., Cantor, M., Ingram, S. N., Lusseau, D., & Simões-Lopes, P. C. (2012). The structure of a bottlenose dolphin society is coupled to a unique foraging cooperation with artisanal fishermen. Biology Letters, rsbl20120174.

  Hare, B., & Woods, V. (2013). The genius of dogs. London, England: Oneworld Publications.

  Plotnik, J. M., Lair, R., Suphachoksahakun, W., & De Waal, F. B. (2011). Elephants know when they need a helping trunk in a cooperative task. Proceedings of the National Academy of Sciences, 108(12), 5116–5121.

  Tomasello, M. (2009). Why we cooperate. Cambridge, MA: MIT Press.

  Tomasello, M., & Vaish, A. (2013). Origins of human cooperation and morality. Annual Review of Psychology, 64, 231–255.

  Visco-Comandini, F., Ferrari-Toniolo, S., Satta, E., Papazachariadis, O., Gupta, R., Nalbant, L. E., & Battaglia-Mayer, A. (2015). Do non-human primates cooperate? Evidences of motor coordination during a joint action task in macaque monkeys. Cortex, 70, 115–127.

  Coordinating joint action

  Knoblich, G., Butterfill, S., & Sebanz, N. (2011). Psychological research on joint action: Theory and data. Psychology of Learning and Motivation, 54, 59–101.

  Knoblich, G., & Sebanz, N. (2008). Evolving intentions for social interaction: From entrainment to joint action. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 363(1499), 2021–2031.

  Sebanz, N., Bekkering, H., & Knoblich, G. (2006). Joint action: Bodies and minds moving together. Trends in Cognitive Sciences, 10(2), 70–76.

  Sebanz, N., Knoblich, G., & Prinz, W. (2005). How two share a task: Corepresenting stimulus-response mappings. Journal of Experimental Psychology: Human Perception and Performance, 31(6), 1234.

  Zacks, J. M., Tversky, B., & Iyer, G. (2001). Perceiving, remembering, and communicating structure in events. Journal of Experimental Psychology: General, 130(1), 29.

  Coupled brains

  Frith, U., & Frith, C. (2010). The social brain: Allowing humans to boldly go where no other species has been. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 165–176.

  Hasson, U., Ghazanfar, A. A., Galantucci, B., Garrod, S., & Keysers, C. (2012). Brain-to-brain coupling: A mechanism for creating and sharing a social world. Trends in Cognitive Sciences, 16(2), 114–121.

  Hommel, B. (2011). The Simon effect as tool and heuristic. Acta Psychologica, 136(2), 189–202.

  Hommel, B., Colzato, L. S., & Van Den Wildenberg, W. P. (2009). How social are task representations? Psychological Science, 20(7), 794–798.

  Sebanz, N., Knoblich, G., Prinz, W., & Wascher, E. (2006). Twin peaks: An ERP study of action planning and control in coacting individuals. Journal of Cognitive Neuroscience, 18(5), 859–870.

  Collaborating to create meaning in conversation

  Clark, H. H. (1996). Using language. Cambridge, England: Cambridge University Press.

  Imitation increases liking

  Chartrand, T. L., & Van Baaren, R. (2009). Human mimicry. Advances in Experimental Social Psychology, 41, 219–274.

  Van Baaren, R., Janssen, L., Chartrand, T. L., & Dijksterhuis, A. (2009). Where is the love? The social aspects of mimicry. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 364(1528), 2381–2389.

  CHAPTER TWO: THE BUBBLE AROUND THE BODY: PEOPLE, PLACES, AND THINGS

  Fast judgments of people, places, and things

  Biederman, I. (1972). Perceiving real-world scenes. Science, 177, 77–80.

  Fei-Fei, L., Iyer, A., Koch, C., & Perona, P. (2007). What do we perceive in a glance of a real-world scene? Journal of Vision, 7(1), 10–10.

  Greene, M. R., & Fei-Fei, L. (2014). Visual categorization is automatic and obligatory: Evidence from Stroop-like paradigm. Journal of Vision, 14(1), 14–14.

  Greene, M. R., & Oliva, A. (2009). The briefest of glances: The time course of natural scene understanding. Psychological Science, 20, 464–472. doi:10.1111/j.1467-9280.2009.02316.x

  Hafri, A., Papafragou, A., & Trueswell, J. C. (2013). Getting the gist of events: Recognition of two-participant actions from brief displays. Journal of Experimental Psychology: General, 142(3), 880.

  Kahneman, D. (2011). Thinking fast and slow. New York, NY: Farrar, Straus and Giroux.

  Kraus, M. W., Park, J. W., & Tan, J. J. (2017). Signs of social class: The experience of economic inequality in everyday life. Perspectives on Psychological Science, 12(3), 422–435.

  Potter, M. C., & Levy, E. I. (1969). Recognition memory for a rapid sequence of pictures. Journal of Experimental Psychology, 81, 10–15.

  Recovered vision deficits

  Sinha, P. (2013). Once blind and now they see. Scientific American, 309(1), 48–55.

  Von Senden, M. (1960). Space and sight: The perception of space and shape in the congenitally blind before and after operation. London, England: Metheun.

  Brain regions specialized for people, places, things

  Downing, P. E., Jiang, Y., Shuman, M., & Kanwisher, N. (2001). A cortical area selective for visual processing of the human body. Science, 293(5539), 2470–2473.

  Grill-Spector, K., & Weiner, K. S. (2014). The functional architecture of the ventral temporal cortex and its role in categorization. Nature Reviews Neuroscience, 15(8), 536–548.

  Kanwisher, N. (2010). Functional specificity in the human brain: A window into the functional architecture of the mind. Proceedings of the National Academy of Sciences, 107(25), 11163–11170.

  Weiner, K. S., & Grill-Spector, K. (2013). Neural representations of faces and limbs neighbor in human high-level visual cortex: Evidence for a new organization principle. Psychologic
al Research, 77(1), 74–97.

  Extraordinary memory for dates

  LePort, A. K., Mattfeld, A. T., Dickinson-Anson, H., Fallon, J. H., Stark, C. E., Kruggel, F.,… McGaugh, J. L. (2012). Behavioral and neuroanatomical investigation of highly superior autobiographical memory (HSAM). Neurobiology of Learning and Memory, 98(1), 78–92.

  Categories of things

  Borges, J. L. (1966). Other inquisitions 1937–1952. New York, NY: Washington Square Press.

  Brown, R. (1958). How shall a thing be called? Psychological Review, 65(1), 14.

  Rosch, E. (1978). Principles of categorization. In E. Rosch & B. B. Lloyd (Eds.), Cognition and categorization (pp. 27–48). Hillsdale, NJ: Erlbaum. [I took the lovely Borges quote from Eleanor Rosch’s influential paper summarizing her work on categorization.]

  Rapid pace of word learning in toddlers

  Miller, G. A., & Gildea, P. M. (1987). How children learn words. Scientific American, 257(3), 94–99. http://dx.doi.org/10.1038/scientificamerican0987

  Basic level

  Brown, R. (1958). How shall a thing be called? Psychological Review, 65(1), 14.

  Markman, E. M. (1989). Categorization and naming in children: Problems of induction. Cambridge, MA: MIT Press.

  Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization (pp. 27–48). Hillsdale, NJ: Erlbaum.

  Parts unite the basic level

  Brown, R. (1958). How shall a thing be called? Psychological Review, 65(1), 14.

  Rosch, E. (1978). Principles of categorization. In E. Rosch & B. Lloyd (Eds.), Cognition and categorization (pp. 27–48). Hillsdale, NJ: Erlbaum.

  Tversky, B., & Hemenway, K. (1984). Objects, parts, and categories. Journal of Experimental Psychology: General, 113(2), 169.

  Faces are special

  Diamond, R., & Carey, S. (1986). Why faces are and are not special: An effect of expertise. Journal of Experimental Psychology: General, 115(2), 107.

  Liu, J., Harris, A., & Kanwisher, N. (2010). Perception of face parts and face configurations: An fMRI study. Journal of Cognitive Neuroscience, 22(1), 203–211.

  Tanaka, J. W., & Farah, M. J. (2003). The holistic representation of faces. In M. A. Peterson & G. Rhodes (Eds.), Perception of faces, objects, and scenes: Analytic and holistic processes (pp. 53–74). Oxford, England: Oxford University Press.

 

‹ Prev