Power, Sex, Suicide

Home > Other > Power, Sex, Suicide > Page 45
Power, Sex, Suicide Page 45

by Nick Lane


  Sagan, L. On the origin of mitosing cells. Journal of Theoretical Biology 14: 225–274; 1967.

  Schatz, G. The tragic matter. FEBS (Federation of European Biochemical Societies) Letters 536: 1–2; 2003.

  Scheffler, I. E. A century of mitochondrial research: achievements and perspectives. Mitochondrion 1: 3–31; 2000.

  Part 1

  General texts

  Dawkins, Richard. The Ancestor’s Tale: A Pilgrimage to the Dawn of Life. Weidenfeld & Nicolson, London, UK, 2004.

  de Duve, Christian. Life Evolving: Molecules, Mind, and Meaning. Oxford University Press, New York, USA, 2002.

  Gould, Stephen Jay. Wonderful Life. The Burgess Shale and the Nature of History.

  Penguin, London, UK, 1989.

  Knoll, Andrew H. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. Princeton University Press, Princeton, USA, 2003.

  Lane, Nick. Oxygen: The Molecule that Made the World. Oxford University Press, Oxford, UK, 2002.

  Margulis, Lynn. Origin of Eukaryotic Cells. Yale University Press, Yale, USA, 1970.

  Mayr, Ernst. What Evolution Is. Weidenfeld & Nicolson, London, UK, 2002.

  Morris, Simon Conway. Life’s Solution: Inevitable Humans in a Lonely Universe. Cambridge University Press, Cambridge, UK, 2003.

  The origin of eukaryotic cells

  Martin, W., Hoffmeister, M., Rotte, C., and Henze, K. An overview of endosymbiotic models for the origins of eukaryotes, their ATP-producing organelles (mitochondria and hydrogenosomes) and their heterotrophic lifestyle. Biological Chemistry 382: 1521–1539; 2001.

  Sagan, L. On the origin of mitosing cells. Journal of Theoretical Biology 14: 255–274; 1967.

  Vellai, T., and Vida, G. The origin of eukaryotes: The difference between prokaryotic and eukaryotic cells. Proceedings of the Royal Society of London B: Biological Sciences 266: 1571–1577; 1999.

  Catastrophic loss of the cell wall

  Cavalier-Smith, T. The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa. International Journal of Systematic and Evolutionary Microbiology 52: 297–354; 2002.

  Maynard-Smith, John, and Szathmáry, Eörs. The Origins of Life, Chapter 6: The Origin of Eukaryotic Cells. Oxford University Press, Oxford, UK, 1999.

  Bacterial cytoskeleton

  van den Ent, F., Amos, L. A., and Lowe, J. Prokaryotic origin of the actin cytoskeleton. Nature 413: 39–44; 2001.

  Jones, L. J., Carballido-Lopez, R., and Errington, J. Control of cell shape in bacteria: Helical, actin-like filaments in Bacillus subtilis. Cell 104: 913–922; 2001.

  Discovery of the archaea

  Keeling, P. J., and Doolittle, W. F. Archaea: Narrowing the gap between prokaryotes and eukaryotes. Proceedings of the National Academy of Sciences of the USA 92: 5761–5764; 1995.

  Woese, C. R., and Fox, G. E. Phylogenetic structure of the prokaryotic domain: The primary kingdoms. Proceedings of the National Academy of Sciences of the USA 74: 5088–5090; 1977.

  The archezoa

  Cavalier-Smith, T. A 6-kingdom classification and a unified phylogeny. In H. E. A. Schenk and W. Schwemmler (eds.), Endocytobiology II, pp. 1027–1034. Walter de Gruyter, Berlin, Germany, 1983.

  —— Eukaryotes with no mitochondria. Nature 326: 332–333; 1987.

  —— Archaebacteria and Archezoa. Nature 339: 100–101; 1989.

  Rickettsia as the ancestor of mitochondria

  Andersson, J. O., and Andersson, S. G. A century of typhus, lice and Rickettsia. Research in Microbiology 151: 143–150; 2000.

  Andersson, S. G., Zomorodipour, A., Andersson J. O., Sicheritz-Ponten, T., Alsmark U. C., Podowski, R. M., Naslund, A. K., Eriksson, A. S., Winkler, H. H., Kurland, C. G. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140; 1998.

  Andersson, S. G. E., Karlberg, O., Canback, B., and Kurland, C. G. On the origin of mitochondria: A genomics perspective. Philosophical Transactions of the Royal Society of London B: Biological Sciences 358: 165–179; 2003.

  Collapse of the archezoa

  Clark, C. G., and Roger, A. J. Direct evidence for secondary loss of mitochondria in Entamoeba hitolytica. Proceedings of the National Academy of Sciences of the USA 92: 6518–6521; 1995.

  Keeling, P. J. A kingdom’s progress: Archezoa and the origin of eukaryotes. Bioessays 20: 87–95; 1998.

  Methanogens as the host cell

  Martin, W., and Embley, T. M. Early evolution comes full circle. Nature 431: 134–136; 2004.

  Pereira, S. L., Grayling, R. A., Lurz, R., and Reeve, J. N. Archaeal nucleosomes. Proceedings of the National Academy of Sciences of the USA 94: 12633–12637; 1997.

  Rivera, M., Jain, R., Moore, J. E., and Lake, J. A. Genomic evidence for two functionally distinct gene classes. Proceedings of the National Academy of Sciences of the USA 95: 6239–6244; 1998.

  Rivera, M. C., and Lake, J. A. The ring of life provides evidence for a genome fusion origin of eukaryotes. Nature 431: 152; 2004.

  Hydrogen hypothesis

  Akhmanova, A., Voncken, F., van Alen, T., van Hoek, A., Boxma, B., Vogels, G., Veenhuis, M., and Hackstein, J. H. A hydrogenosome with a genome. Nature 396: 527–528; 1998.

  Boxma, B., de Graat, R. M., and van der Staay, G. W., et al. An anaerobic mitochondrion that produces hydrogen. Nature 434: 74–79; 2005.

  Embley, T. M., and Martin, W. A hydrogen-producing mitochondrion. Nature 396: 517–519; 1998.

  Gray, M. W. Evolutionary biology: The hydrogenosome’s murky past. Nature 434: 29–31; 2005.

  Martin, W., and Müller, M. The hydrogen hypothesis for the first eukaryote. Nature 392: 37–41; 1998.

  —— Russell, M. J. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions of the Royal Society of London B 358: 59–85; 2003.

  Müller, M., and Martin, W. The genome of Rickettsia prowazekii and some thoughts on the origin of mitochondria and hydrogenosomes. Bioessays 21: 377–381; 1999.

  Anaerobic mitochondria

  Horner, D. S., Heil, B., Happe, T., and Embley, T. M. Iron hydrogenases—ancient enzymes in modern eukaryotes. Trends in Biochemical Sciences 27: 148–153; 2002.

  Sutak, R., Dolezal, P., Fiumera, H. L., Hardy, I., Dancis, A., Delgadillo-Correa, M., Johnson, P. J., Mujller, M., and Tachezy, J. Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proceedings of the National Academy of Sciences of the USA 101: 10368–10373; 2004.

  Theissen, U., Hoffmeister, M., Grieshaber, M., and Martin, W. Single eubacterial origin of eukaryotic sulfide: Quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Molecular Biology and Evolution 20(9): 1564–1574; 2003.

  Tielens, A. G., Rotte, C., van Hellemond, J. J., and Martin, W. Mitochondria as we don’t know them. Trends in Biochemical Sciences 27: 564–572; 2002.

  Van der Giezen, M., Slotboom, D. J., Horner, D. S., Dyal, P. L., Harding, M., Xue, G. P., Embley, T. M., and Kunji, E. R. Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: A common origin for both organelles. EMBO (European Molecular Biology Organization) Journal 21: 572–579; 2002.

  Ocean chemistry

  Anbar, A. D., and Knoll, A. H. Proterozoic ocean chemistry and evolution: A bioinorganic bridge? Science 297: 1137–1142; 2002.

  Canfield, D. E. A new model of Proterozoic ocean chemistry. Nature 396: 450–452; 1998.

  —— Habicht K. S., and Thamdrup B. The Archean sulfur cycle and the early history of atmospheric oxygen. Science 288: 658–661; 2000.

  Part 2

  General texts

  de Duve, Christian. Life Evolving: Molecules, Mind, and Meaning. Oxford University Press, New York, USA, 2002.

  Harold, Franklin M. The Way of the Cell. Molecules, Organisms, and the Order of Life. Oxford U
niversity Press, New York, USA, 2001.

  —— The Vital Force: A Study of Bioenergetics. W. H. Freeman and Co., New York, USA, 1986.

  Lane, Nick. Oxygen: The Molecule that Made the World. Oxford University Press, Oxford, UK, 2002.

  Nicholls, David, and Ferguson, Stuart J. Bioenergetics 3. Academic Press, Oxford, UK, 2002.

  Prebble, John, and Weber, Bruce. Wandering in the Gardens of the Mind—Peter Mitchell and the Making of Glynn. Oxford University Press, Oxford, UK, 2003.

  Wolpert, Lewis and Richards, Alison. Passionate Minds: The Inner World of Scientists. Oxford University Press, Oxford, UK, 1997.

  Energy production and the sun

  Schatz, G. The tragic matter. FEBS (Federation of European Biochemical Societies) Letters 536: 1–2; 2003.

  Lavoisier and the discovery of respiration

  Jaffe, Bernard. Crucibles. Newton Publishing Co., New York, USA, 1932.

  Lavoisier, A. Elements of Chemistry. Dover Publications Inc., New York, USA, 1965.

  Morris, R. The Last Sorcerers: The Path from Alchemy to the Periodic Table. Joseph Henry Press, Washington DC, USA, 2003.

  Discovery of the respiratory chain

  Gest, H. Landmark discoveries in the trail from chemistry to cellular biochemistry, with particular reference to mileposts in research on bioenergetics. Biochemistry and Molecular Biology Education 30: 9–13; 2002.

  Keilin, D. The History of Cell Respiration and Cytochrome. Cambridge University Press, Cambridge, UK, 1966.

  —— Cytochrome and respiratory enzymes. Proceedings of the Royal Society of London B: Biological Sciences 104: 206–252; 1929.

  Lahiri, S. Historical perspectives of cellular oxygen sensing and responses to hypoxia. Journal of Applied Physiology 88: 1467–1473; 2000.

  Warburg, O. The Oxygen-Transferring Ferment of Respiration. In Nobel Lectures, Physiology or Medicine 1922–1941, Nobel Lecture, 1931. Elsevier Publishing Company, Amsterdam, Holland, 1965 (and available online at the Nobel e-Museum).

  Fermentation

  Buchner, E. Cell-Free Fermentation. In Nobel Lectures, Chemistry 1901–1921, Nobel Lecture, 1907. Elsevier Publishing Company, Amsterdam, Holland, 1966 (and available online at the Nobel e-Museum).

  Discovery of ATP

  Engelhardt, W. A. Life and Science. Autobiography. Annual Review of Biochemistry 51: 1–19; 1982.

  Fruton, J. Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. Yale University Press, New Haven, USA, 1999.

  Gest, H. Landmark discoveries in the trail from chemistry to cellular biochemistry, with particular reference to mileposts in research on bioenergetics. Biochemistry and Molecular Biology Education 30: 9–13; 2002.

  Rate of ATP production

  Rich, P. The cost of living. Nature 421: 583; 2003.

  The elusive squiggle

  Gest, H. Landmark discoveries in the trail from chemistry to cellular biochemistry, with particular reference to mileposts in research on bioenergetics. Biochemistry and Molecular Biology Education 30: 9–13; 2002.

  Harold, F. M. The 1978 Nobel Prize in Chemistry. Science 202: 1174–1176; 1978.

  Peter Mitchell and chemiosmotics

  Chappell, J. B. Nobel Prize: Chemistry. Trends in Biochemical Sciences 4: N3–N4; 1979.

  Harold, F. M. The 1978 Nobel Prize in Chemistry. Science 202: 1174–1176; 1978.

  Matzke, M. A, and Matzke, A. J. M. Kuhnian revolutions in biology: Peter Mitchell and the chemiosmotic theory. Bioessays 19: 91–93; 1997.

  Mitchell, P. David Keilin’s Respiratory Chain Concept and its Chemiosmotic Consequences.

  In Nobel Lectures in Chemistry 1971–1980, Nobel Lecture, 1978, Sture Forsén (ed.), World Scientific Publishing Company, Singapore, 1993 (and available online at the Nobel e-Museum).

  —— Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191: 144–148; 1961.

  Orgel, L. E. Are you serious, Dr Mitchell? Nature 402: 17; 1999.

  Prebble, J. Peter Mitchell and the ox phos wars. Trends in Biochemical Sciences 27: 209–212; 2002.

  Schatz, G. Efraim Racker. In Biographical Memoirs, vol. 70. National Academies Press, Washington DC, USA, 1996.

  The Jagendorf-Uribe experiment

  Jagendorf, A. T., and Uribe, E. ATP formation caused by acid-base transition of spinach chloroplasts. Proceedings of the National Academy of Sciences USA 55: 170–177; 1966.

  —— Chance, luck and photosynthesis research: An inside story. Photosynthesis Research 57: 215–229; 1998.

  Structure of the ATPase

  Walker, J. E. ATP Synthesis by Rotary Catalysis. In Nobel Lectures in Chemistry 1996–2000, Nobel Lecture, 1997, Ingmar Grenthe (ed.), World Scientific Publishing Company, Singapore, 2003 (and available online at the Nobel e-Museum).

  Wider function of the proton current

  Harold, Franklin M. The Way of the Cell. Molecules, Organisms, and the Order of Life. Oxford University Press, New York, USA, 2001.

  —— Gleanings of a chemiosmotic eye. Bioessays 23: 848–855; 2001.

  Origin of life

  Martin, W., and Russell, M. J. On the origins of cells: A hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells. Philosophical Transactions of the Royal Society of London B: Biological Sciences 358: 59–85; 2003.

  Russell, M. J., and Hall, A. J. The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front. Journal of the Geological Society of London 154: 377–402; 1997.

  —— —— Cairns-Smith, A. G., and Braterman, P. S. Submarine hot springs and the origin of life. Nature 336: 117; 1988.

  Wächtershäuser, G. Groundworks for an evolutionary biochemistry: The iron-sulphur world. Progress in Biophysics and Molecular Biology 58: 85–201; 1992.

  Part 3

  General texts

  Dennett, Daniel. Darwin’s Dangerous Idea. Penguin, London, UK, 1995.

  Maynard Smith, John, and Szathmáry, Eörs. The Origins of Life. Oxford University Press, Oxford, UK, 1999.

  Monod, Jacques. Chance and Necessity. Penguin, London, UK, 1997 (first published in English 1971).

  Prescott, L. M., Harley, J. P., and Klein, D. A. Microbiology (5th edition). McGraw-Hill Education, Maidenhead, UK, 2001.

  Ridley, Mark. Mendel’s Demon. Weidenfeld & Nicolson, London, UK, 2000.

  Speed of bacterial proliferation

  Jensen, P. R., Loman, L., Petra, B., van der Weijden, C., and Westerhoff, H. V. Energy buffering of DNA structure fails when Escherichia coli runs out of substrate. Journal of Bacteriology 177: 3420–3426; 1995.

  Koedoed, S., Otten, M. F., Koebmann, B. J., Bruggeman, F. J., Bakker, B. M., Snoep, J. L., Krab, K., van Spanning, R. J. M., van Verseveld, H. W., Jensen, P. R., Koster, J. G., and Westerhoff, H. V. A turbo engine with automatic transmission? How to marry chemicomotion to the subtleties and robustness of life. Biochimica et Biophysica Acta 1555: 75–82; 2002.

  O’Farrell, P. H. Cell cycle control: Many ways to skin a cat. Trends in Cell Biology 2: 159–163; 1992.

  Genome size of soil bacteria

  Konstantinidis, K. T., and Tiedje, J. M. Trends between gene content and genome size in prokaryotic species with larger genomes. Proceedings of the National Academy of Sciences USA 101: 3160–3165; 2004.

  Genome of Rickettsia

  Andersson, J. O., and Andersson, S. G. A century of typhus, lice and Rickettsia. Research in Microbiology 151: 143–150; 2000.

  Andersson, S. G., Zomorodipour, A., Andersson, J. O., Sicheritz-Ponten, T., Alsmark, U. C., Podowski, R. M., Naslund, A. K., Eriksson, A. S., Winkler, H. H., and Kurland, C. G. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396: 133–140; 1998.

  Gross, L. How Charles Nicolle of the Pasteur Institute discovered that epidemic typhus is transmitted by lice: Reminiscences from my years at the Pasteur Institute in Paris. Proceedings of the Nati
onal Academy of Sciences USA 93: 10539–10540; 1996.

  Gene loss and lateral gene transfer

 

‹ Prev