Power, Sex, Suicide
Page 47
Orrenius, S. Mitochondrial regulation of apoptotic cell death. Toxicology Letters 149: 19–23; 2004.
Zamzami, N., and Kroemer, G. Apoptosis: Mitochondrial membrane permeabilization—the (w)hole story? Current Biology 13: R71–R73; 2003.
Link between intrinsic and extrinsic pathways of apoptosis
Sprick, M. R., and Walczak, H. The interplay between the Bcl-2 family and death receptor-mediated apoptosis. Biochemica et Biophysica Acta 1644: 125–132; 2004.
Bacterial origin of apoptotic genes
Ameisen, J. C. On the origin, evolution, and nature of programmed cell death: A timeline of four billion years. Cell Death and Differentiation 9: 367–393; 2002.
Koonin, E. V., and Aravind, L. Origin and evolution of eukaryotic apoptosis: The bacterial connection. Cell Death and Differentiation 9: 394–404; 2002.
Host-symbiont relationships in the evolution of apoptosis
Blackstone, N. W., and Green, D. R. The evolution of a mechanism of cell suicide. Bioessays 21: 84–88; 1999.
—— Kirkwood, T. B. L. Mitochondria and programmed cell death: ‘Slave revolt’ or community homeostasis? In P. Hammerstein (ed.), Genetic and Cultural Evolution of Cooperation. MIT Press, Cambridge MA, USA 2003.
Frade, J. M., and Michaelidis, T. M. Origin of eukaryotic programmed cell death: A consequence of aerobic metabolism? Bioessays 19: 827–832; 1997.
Müller, A., Günther, D., Düx, F., Naumann, M., Meyer T. F., and Rudel, T. Neisserial porin (PorB) causes rapid calcium influx in target cells and induces apoptosis by the activation of cysteine proteases. EMBO (European Molecular Biology Organization) Journal 18: 339–352; 1999.
Naumann, M., Rudel, T., and Meyer, T. Host cell interactions and signalling with Neisseria gonorrhoeae. Current Opinion in Microbiology 2: 62–70; 1999.
Free radicals and recombination
Brennan, R. J., and Schiestl, R. H. Chloroform and carbon tetrachloride induce intrachromosomal recombination and oxidative free radicals in Saccharomyces cerevisiae. Mutation Research 397: 271–278; 1998.
Filkowski, J., Yeoman, A., Kovalchuk, O., and Kovalchuk, I. Systemic plant signal triggers genome instability. Plant Journal 38: 1–11; 2004.
Nedelcu, A. M., Marcu, O., and Michod, R. E. Sex as a response to oxidative stress: A twofold increase in cellular reactive oxygen species activates sex genes. Proceedings of the Royal Society of London B: Biological Sciences 271: 1591–1592; 2004.
Sex and the origin of death
Blackstone, N. W., and Green, D. R. The evolution of a mechanism of cell suicide. Bioessays 21: 84–88; 1999.
—— —— Redox control and the evolution of multicellularity. Bioessays 22: 947–953; 2000.
Part 6
General texts
Ridley, Mark. Mendel’s Demon: Gene Justice and the Complexity of Life. Phoenix, London, UK, 2001.
Sykes, Bryan. The Seven Daughters of Eve. Corgi, London, UK, 2001.
Evolution of the sexes
Charlesworth, B. The evolution of chromosomal sex determination. Novartis Foundation Symposium 244: 207–224; 2002.
Whitfield, J. Everything you always wanted to know about sexes. PLoS (Public Library of Science) Biology 2: 0718–0721; 2004.
Uniparental inheritance
Birky, C. W., Jr. Uniparental inheritance of mitochondrial and chloroplast genes: Mechanisms and evolution. Proceedings of the National Academy of Sciences USA 92: 11331–11338; 1995.
Hoekstra, R. E. Evolutionary origin and consequences of uniparental mitochondrial inheritance. Human Reproduction 15 (suppl. 2): 102–111; 2000.
Selfish conflict
Cosmides, L. M., and Tooby, J. Cytoplasmic inheritance and intragenomic conflict. Journal of Theoretical Biology 89: 83–129; 1981.
Hurst, L., and Hamilton, W. D. Cytoplasmic fusion and the nature of sexes. Proceedings of the Royal Society of London B: Biological Sciences 247: 189–194; 1992.
Partridge, L., and Hurst, L. D. Sex and conflict. Science 281: 2003–2008; 1998.
Male sterility in plants
Budar, F., Touzet, P., and de Paepe, R. The nucleo-mitochondrial conflict in cytoplasmic male sterilities revisited. Genetica 117: 3–16; 2003.
Sabar, M., Gagliardi, D., Balk, J., and Leaver, C. J. ORFB is a subunit of F1F(O)-ATP synthase: Insight into the basis of cytoplasmic male sterility in sunflower. EMBO (European Molecular Biology Organization) Reports 4: 381–386; 2003.
Drosophila giant sperm
Pitnick, S., and Karr, T. L. Paternal products and by-products in Drosophila development. Proceedings of the Royal Society of London B: Biological Sciences 265: 821–826; 1998.
Heteroplasmy in angiosperms
Zhang, Q., Liu, Y., and Sodmergen. Examination of the cytoplasmic DNA in male reproductive cells to determine the potential for cytoplasmic inheritance in 295 angiosperm species. Plant Cell Physiology 44: 941–951; 2003.
Ooplasmic transfer
Barritt, J. A., Brenner, C. A., Malter, H. E., and Cohen, J. Mitochondria in human offspring derived from ooplasmic transplantation. Human Reproduction 16: 513–516; 2001.
St John, J. C. Ooplasm donation in humans: The need to investigate the transmission of mitochondrial DNA following cytoplasmic transfer. Human Reproduction 17: 1954–1958; 2002.
Mitochondrial DNA and human evolution
Ankel-Simons, F., and Cummins, J. M. Misconceptions about mitochondria and mammalian fertilisation: Implications for theories on human evolution. Proceedings of the National Academy of Sciences USA 93: 13859–13863; 1996.
Cann, R. L., Stoneking, M., and Wilson, A. C. Mitochondrial DNA and human evolution. Nature 325: 31–36; 1987.
Krings, M., Stone, A., Schmitz, R. W., Krainitzki, H., Stoneking, M., and Pääbo, S.
Neanderthal DNA sequences and the origin of modern humans. Cell 90: 19–30; 1997.
Mitochondrial recombination
Eyre-Walker, A., Smith, N. H., and Smith, J. M. How clonal are human mitochondria? Proceedings of the Royal Society of London B 266: 477–483; 1999.
Hagelberg, E. Recombination or mutation rate heterogeneity? Implications for Mitochondrial Eve. Trends in Genetics 19: 84–90; 2003.
Kraytsberg, Y., Schwartz, M., Brown, T. A., Ebralidse, K., Kunz, W. S., Clayton, D. A., Vissing, J., and Khrapko, K. Recombination of human mitochondrial DNA. Science 304: 981; 2004.
Calibrating the mitochondrial clock
Gibbons, A. Calibrating the mitochondrial clock. Science 279: 28–29; 1998.
Cummins, J. Mitochondria DNA and the Y chromosome: Parallels and paradoxes. Reproduction, Fertility and Development 13: 533–542; 2001.
Lake Mungo fossil
Adcock, G. J., Dennis, E. S., Easteal, S., Huttley, G. A., Jermiin, L. S., Peacock, W. J., and Thorne, A. Mitochondrial DNA sequences in ancient Australians: Implications for modern human origins. Proceedings of the National Academy of Sciences USA 98: 537–542; 2001.
Bowler, J. M., Johnston, H., Olley, J. M., Prescott, J. R., Roberts, R. G., Shawcross, W., and Spooner, N. A. New ages for human occupation and climatic change at Lake Mungo, Australia. Nature 421: 837–840; 2003.
Mitochondrial selection
Coskun, P. E., Ruiz-Pesini, E., and Wallace, D. C. Control region mtDNA variants: Longevity, climatic adaptation, and a forensic conundrum. Proceedings of the National Academy of Sciences USA 100: 2174–2176; 2003.
—— Beal, M. F., and Wallace, D. C. Alzheimer’s brains harbor somatic mtDNA controlregion mutations that suppress mitochondrial transcription and replication. Proceedings of the National Academy of Sciences USA 101: 10726–10731; 2004.
Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., and Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303: 223–226; 2004.
—— Lapeña, A. C., Díez-Sánchez, C., Pérez-Martos, A., Montoya, J., Alvarez, E., Díaz, M., Urriés, A., Montoro, L., López-Pérez, M. J., and Enríquez J. A. Human mtDNA haplogroups associated with high or reduced spermat
ozoa motility. American Journal of Human Genetics 67: 682–696; 2000.
The dual genomic control system (co-adaptation)
Ballard, J. W. O., and Whitlock, M. C. The incomplete natural history of mitochondria. Molecular Ecology 13: 729–744; 2004.
Blier, P. U., Dufresne, F., and Burton, R. S. Natural selection and the evolution of mtDNA-encoded peptides: Evidence for intergenomic co-adaptation. Trends in Genetics 17: 400–406; 2001.
Ross, I. K. Mitochondria, sex and mortality. Annals of the New York Academy of Sciences 1019: 581–584; 2004.
The mitochondrial bottleneck
Barritt, J. A., Brenner, C. A., Cohen, J., and Matt, D. W. Mitochondrial DNA rearrangements in human oocytes and embryos. Molecular Human Reproduction 5: 927–933; 1999.
Cummins, J. M. The role of mitochondria in the establishment of oocyte functional competence. European Journal of Obstetrics and Gynecology and Reproductive Biology 115S: S23–S29; 2004.
Jansen, R. P. S. Germline passage of mitochondria: Quantitative considerations and possible embryological sequelae. Human Reproduction 15 (suppl. 2): 112–128; 2000.
Krakauer, D. C., and Mira, A. Mitochondria and germ-cell death. Nature 400: 125–126; 1999.
Perez, G. I., Trbovich, A. M., Gosden, R. G., and Tilly, J. L. Mitochondria and the death of oocytes. Nature 403: 500–501; 2000.
Part 7
General texts
Halliwell, B., and Gutteridge, J. Free Radicals in Biology and Medicine. Oxford University Press, Oxford, UK, 1999.
Holliday, Robin. Understanding Ageing. Cambridge University Press, Cambridge, UK, 1995.
Lane, Nick. Oxygen: The Molecule that Made the World. Oxford University Press, Oxford, UK, 2002.
Lifespan and metabolic rate
Barja, G. Mitochondrial free-radical production and aging in mammals and birds.
Annals of the New York Academy Sciences 854: 224–238; 1998.
Brunet-Rossinni, A. K., and Austad, S. N. Ageing studies on bats: A review. Biogerontology 5: 211–222; 2004.
Skulachev, V. P. Mitochondria, reactive oxygen species and longevity: Some lessons from the Barja group. Ageing Cell 3: 17–19; 2004.
Speakman, J. R., Selman, C., McLaren, J. S., and Harper, E. J. Living fast, dying when? The link between ageing and energetics. Journal of Nutrition 132 (suppl. 2): 1583S–1597S; 2002.
Mitochondrial theory of ageing
Harman, D. The biologic clock: The mitochondria? Journal of the American Geriatrics Society 20: 145–147; 1972.
Miquel, J., Economos, A. C., Fleming, J., and Johnson, J. E., Jr. Mitochondrial role in cell ageing. Experimental Gerontology 15: 575–591; 1980.
Failure of antioxidants
Barja, G. Free radicals and aging. Trends in Neurosciences 27: 595–600; 2004.
Cutler, R. G. Antioxidants and longevity of mammalian species. Basic Life Sciences 35: 15–73; 1985.
Orr, W. C., Mockett, R. J., Benes J. J., and Sohal, R. S. Effects of overexpression of copper-zinc and manganese superoxide dismutases, catalase, and thioredoxin reductase genes on longevity in Drosophila melanogaster. Journal of Biological Chemistry 278: 26418–26422; 2003.
Mitochondrial diseases
Chinnery, P. F., DiMauro, S., Shanske, S., et al. Risk of developing a mitochondrial DNA deletion disorder. Lancet 364: 591–596; 2004.
Fernández-Moreno, M., Bornstein, B., Petit, N., and Garesse, R. The pathophysiology of mitochondrial biogenesis: Towards four decades of mitochondrial DNA research. Molecular Genetics and Metabolism 71: 481–495; 2000.
Marx, J. Metabolic defects tied to mitochondria gene. Science 306: 592–593; 2004.
Schapira, A. Mitochondrial DNA and disease. The Biochemist 27(3): 24–27; 2005.
Wallace, D. C. Mitochondrial diseases in man and mouse. Science 283: 1482–1488; 1999.
Mitochondrial mutations in ageing
Coskun, P. E., Ruiz-Pesini, E., and Wallace, D. C. Control region mtDNA variants: Longevity, climatic adaptation, and a forensic conundrum. Proceedings of the National Academy of Sciences USA 100: 2174–2176; 2003.
Lightowlers, R. N., Jacobs, H. T., and Kajander, O. A. Mitochondrial DNA—all things bad? Trends in Genetics 15: 91–93; 1999.
Linnane, A. W., Marzuki, S., Ozawa, T., and Tanaka, M. Mitochondria DNA mutations as an important contributor to ageing and degenerative diseases. Lancet 1 (8639): 642–645; 1989.
Michikawa, Y., Mazzucchelli, F., Bresolin, N., Scarlato, G., and Attardi, G. Aging-dependent large accumulation of point mutations in the human mtDNA control region for replication. Science 286: 774–779; 1999.
Zhang, J., Asin-Cayuela, J., Fish, J., Michikawa, Y., Bonafè, M., Olivieri, F., Passarino, G., De Benedictis, G., Franceschi, C., and Attardi, G. Strikingly higher frequency in centenarians and twins of mtDNA mutation causing remodeling of replication origin in leukocytes. Proceedings of the National Academy of Sciences USA 100: 1116–1121; 2003.
Redox signalling in mitochondria
Allen, J. F. Control of gene expression by redox potential and the requirement for chloroplast and mitochondrial genes. Journal of Theoretical Biology 165: 609–631; 1993.
—— The function of genomes in bioenergetic organelles. Philosophical Transactions of the Royal Society of London B: Biological Sciences 358: 19–38; 2003.
Landar, A. L., Zmijewski, J. W., Oh, J. Y., and Darley Usmar, V. M. Message from the cell’s powerhouse. The Biochemist 27(3): 9–14; 2005.
The retrograde response
Butow, R. A., and Avadhani, N. G. Mitochondrial signaling: The Retrograde response. Molecular Cell 14: 1–15; 2004.
De Benedictis, G., Carrieri, G., Garastro, S., Rose, G., Varcasia, O., Bonafè, M., Franceschi, C., and Jazwinski, S. M. Does a retrograde response in human aging and longevity exist?Experimental Gerontology 35: 795–801; 2000.
Apoptosis and neurodegenerative diseases
Coskun, P. E., Ruiz-Pesini, E., and Wallace, D. C. Control region mtDNA variants: Longevity, climatic adaptation, and a forensic conundrum. Proceedings of the National Academy of Sciences USA 100: 2174–2176; 2003.
Wright, A. F., Jacobson, S. G., Cideciyan, A. V., Roman, A. J., Shu, X., Vlachantoni, D, McInnes, R. R., and Riemersma, R. A. Lifespan and mitochondrial control of neuro-degeneration. Nature Genetics 36: 1153–1158; 2004.
Proof-reading in mice
Balaban, R. S., Nemoto, S., and Finkel, T. Mitochondria, oxidants, and aging. Cell 120: 483–495; 2005.
Trifunovic, A., Wredenberg, A., Falkenberg, M., Spelbrink, J. N., Rovio, A. T., Bruder, C. E., Bohlooly-Y, M., Gidlof, S., Oldfors, A., Wibom, R., Tornell, J., Jacobs, H. T., and Larsson, N. G. Premature ageing in mice expressing defective mitochondrial polymerase. Nature 429: 417–423; 2004.
Source of leakage at complex I
Herrero, A., and Barja, G. Localization of the site of oxygen radical generation inside complex I of heart and nonsynaptic brain mammalian mitochondria. Journal of Bioenergetics and Biomembranes 32: 609–615; 2000.
Kushnareva, Y., Murphy, A. N., and Andreyev, A. Complex I-mediated reactive oxygen species generation: Modulation by cytochrome c and NAD(P)+ oxidation state. Biochemical Journal 368: 545–553; 2002.
Japanese centenarians
Tanaka, M., Gong, J. S., Zhang, J., Yoneda, M., and Yagi, K. Mitochondrial genotype associated with longevity. Lancet 351: 185–186; 1998.
—— —— —— Yamada, Y., Borgeld, H. J., and Yagi, K. Mitochondrial genotype associated with longevity and its inhibitory effect on mutagenesis. Mechanisms of Ageing and Development 116: 65–76; 2000.
Uncoupling, ageing and obesity
Ruiz-Pesini, E., Mishmar, D., Brandon, M., Procaccio, V., and Wallace, D. C. Effects of purifying and adaptive selection on regional variation in human mtDNA. Science 303: 223–226; 2004.
Speakman, J. R., Talbot, D. A., Selman, C., Snart, S., McLaren, J. S., Redman, P., Krol, E., Jackson, D. M., Johnson, M. S., and Brand, M. D. Uncoupled and surviving: Individual mice with high metabolism have greater mitoc
hondrial uncoupling and live longer. Aging Cell 3: 87–95; 2004.
Exercise paradox