Before the Dawn: Recovering the Lost History of Our Ancestors

Home > Other > Before the Dawn: Recovering the Lost History of Our Ancestors > Page 30
Before the Dawn: Recovering the Lost History of Our Ancestors Page 30

by Nicholas Wade


  Given the power of modern genetics to deconstruct complex populations like that of England, it should be a simple problem to analyze the genetics of Iceland and check the validity of the historians’ position. But it’s not so easy. Comparison of Icelandic Y chromosomes with those in Scandinavia and the British Isles confirms that most of the male founders were indeed Norse, though not overwhelmingly so: some 20 to 25% of Iceland’s founding fathers appear to have had Gaelic, meaning Celtic, ancestry, with the rest being of Norse origin.305

  The founding mothers are much harder to trace. The patterns of mitochondrial DNA found among Icelanders today look generically European but without greatly resembling those of any particular country.306 They look, well, Icelandic. The reason is probably genetic drift, the random gain or loss of genetic signatures between generations, accentuated by the violent fluctuations in Iceland’s population since the settlement. The Black Death killed 45% of the population in 1402-1404. A smallpox epidemic in 1708 reduced the population by 35%. Famine, the aftermath of a volcanic eruption, caused a 20% decline in 1784-1785. After each of these population declines and expansions, the characteristic mix of mitochondrial DNA signatures would have changed, pushing the population farther down a separate path from that of its source populations.

  With the genetic answers being so Delphic, a team of researchers has resorted to the old technique of craniometry. They measured Icelandic skulls from the settlement period and compared them with medieval skull collections from Ireland and Norway. Unfortunately the Icelandic skulls were not in good enough condition to tell their sex. Overall, they seemed very similar to the Norse skulls and less like those of Ireland. The researchers say that “although our results do not preclude a significant Irish or other contingent among the settlers of Iceland, we conclude that the founding population was of predominantly (60-90%) Norwegian origin.”307

  To help in its quest for disease genes, DeCode Genetics has assembled a genealogical database of the Icelandic population that extends back 1,100 years into the past. It is based on calfskin documents that hold the first 300 years of records, on church archives, and on the data from three complete censuses that were held starting in 1703. DeCode’s genealogist, Thordur Kristjansson, reckons the database includes the names of about half the Icelanders who have ever lived, including 85% of those born in the nineteenth century and almost everyone who lived in the twentieth century.308 The database has enabled DeCode researchers to explore the historical dynamics of a human population in fascinating detail.

  One finding is that generation times are shorter in mother-to-daughter lines of descent than in father-to-son lineages. The average interval between generations was 29 years in female lineages going back to 1698, 32 years for male lineages. The difference presumably reflects the simple fact that women tend to be younger than their husbands.

  A greater surprise is how many people in one generation leave few or no descendants in the next. DeCode has traced the ancestry of all 131,060 Icelanders born from 1972 to 2002 back to two cohorts of ancestors. Of all contemporary Icelandic women born since 1972, 92% are descended from only 22% of the women born in the 1848-1892 cohort, and 86% of contemporary men are the progeny of just 26% of this group.

  The progeny pyramid narrowed even more steeply going back to an earlier generation of ancestors, those born between 1698 and 1742. Because of the incompleteness of the genealogy for earlier centuries, the pedigree of many contemporary Icelanders could not be traced that far back. Nevertheless, DeCode researchers found that just 7% of the women born in the early eighteenth century period are the ancestresses of 62% of contemporary women, while 10% of the men of this period fathered 71% of contemporary males.309 Most people, in other words, have lines of descent that eventually go extinct, at least in a population the size of Iceland’s, while just a few ancestors give rise to the majority of subsequent population cohorts.

  This difference in reproductive success seems to be due largely to genetic drift, the force of which depends on the size of the population. Iceland’s population fell to a post-settlement low of 33,000 after the 1708 smallpox epidemic but steadily increased from the beginning of the nineteenth century to its present level of 290,000. Even during this expansion, the influence of genetic drift was still at work. Before the end of the Pleistocene, there may have been many human populations no bigger than this, offering much grist for drift to work on.

  Jewish Origins

  The population history of Jews has been studied more than that of most other groups and has yielded one surprise after another. The population’s first remarkable feature, from which all the others follow, is that Jews have to a significant extent married among themselves over the centuries. Jewish communities, in other words, have been largely endogamous, at least until recent times, which means the population’s gene pool has had time to develop its own private history, and this genetic history has shed light on many historical events.

  An important consequence of endogamy is that the gene pool is not diluted through intermarriage and so the selective pressures that may act on a population are able, over time, to favor specific genetic variations. A striking possibility, plausible though not yet confirmed, is that one particular Jewish community, the Ashkenazim of northern and central Europe, lived for a long time under a harsh selective pressure that raised certain variant genes to high frequency. These variant genes are well known to physicians because of their serious side effects—when inherited from both parents they cause a variety of serious diseases. But the variant genes can hardly have become so common through their role in promoting disease. They must confer some special benefit, and that, the hypothesis goes, is increased intelligence.

  The selective pressure, according to this idea, was the restriction of Ashkenazim by their European host populations to a small number of occupations that happened to require higher than usual mental agility. The pressure lasted from about AD 800 to 1700. If true, the hypothesis, described further below, has several interesting implications, including that it would represent a very recent and dynamic example of human evolutionary change.

  Judaism is a religion, open to others to convert to, and it has long seemed that religion and culture, not necessarily genetics, were the common elements of and between the world’s various Jewish communities. But in 2000 a team of geneticists led by Michael Hammer of the University of Arizona reported that men from many far flung Jewish communities have the same set of variations on their Y chromosomes. The variations are not exclusive to Jews but are common throughout the Middle East.310 The finding meant that the founding fathers of Jewish communities around the world were drawn from the same ancestral Middle Eastern population of 4,000 years ago from which other peoples, such as Arabs, Turks and Armenians, are also descended. These generic Middle Eastern Y chromosomes, part of the J branch of the worldwide Y chromosome family tree, are both a common link between men of different Jewish communities and proof that their communities must have remained genetically separate from their non-Middle Eastern host populations.

  But genetics points to a very different story with Jewish women. A team under David Goldstein of University College, London, surveyed Jewish communities of Germany and eastern Europe, known as Ashkenazi Jews, as well as those of Morocco, Iraq, Iran, Georgia, Bukhara, Yemen, Ethiopia and India. Unlike the case with the Y chromosome, they found that each Jewish community has its own pattern of mitochondrial DNA variations, evidence that Jewish women, unlike Jewish men, do not all come from the same ancestral population.

  Mostly, the mitochondrial DNA in each Jewish community doesn’t closely resemble that of any other population, meaning that the geographic origin of the founding mothers of Jewish communities cannot be identified for certain. However, in several cases it looks as if it could come from the host community. For example, among the Bene Israel, the Jewish community of Bombay in India, the commonest pattern of mitochondrial DNA is just one mutation away from a pattern common among non-Jewish Indians.

  T
he explanation proposed by Goldstein and his colleagues is that the founding fathers of Jewish communities came from the Middle East, the founding mothers from the host population in each country.311 The Jewish men, arriving perhaps as traders and presumably unmarried, took wives from the local population in each country, and it seems then converted their wives to Judaism. Once the community was established and reached sufficient size, it became closed; no more wives were taken from the host population, and community members married among themselves. With no fresh infusions from the local population, the mitochondrial DNA in each Jewish community fell under the influence of genetic drift, making it look less and less like that of the local version from which it originated.

  If this explanation is correct, the members of a Jewish community are generally a genetic admixture between Middle Easterners (the founding fathers) and the host population of each country (the founding mothers). This could explain why Jews often resemble the people of their host country, yet also in some respects resemble one another.

  The genetic findings are generally compatible with Jewish historical accounts, though not in every detail. The ancestral Jewish population is ancient but came from a mix of Middle Eastern men, DNA analysis indicates, not a single patriarch. Many Jewish communities have accounts or traditions of how they were founded, often to escape persecution or at the invitation of a friendly potentate. The Iraqi Jewish community (whose members now live mostly in Israel) is said to have been founded after the destruction of the first temple in 586 BC. The Bene Israel of Bombay say their ancestors fled to India to escape the persecution of Antiochus Epiphanus, who ruled from 175 to 163 BC. The DNA analysis in general confirms that Jewish communities are ancient, though it cannot place an exact date on their founding. But the circumstance it suggests for their origin, that of single Jewish men taking local wives, indicates that at least some Jewish communities probably began as trading outposts, not by the mass emigration of families.

  The modern Jewish population falls into three main groups, based on ancestral place of origin. Ashkenazi Jews lived mostly in Germany and eastern Europe and, from at least the sixth century AD, spoke a common language, Yiddish; Sephardic Jews are those expelled from Spain and Portugal in AD 1492 during the Spanish Inquisition; and Oriental Jews are those who have always lived in the Near East. Of the 5.7 million Jews living in the United States, some 90% are of Ashkenazic origin; of the 4.7 million Jews in Israel, 47% are Ashkenazic, 30% Sephardic and 23% Oriental.312

  Jewish status, except for converts, is now defined by maternal descent. This practice, however, goes back only to Talmudic times, the period from around 200 BC to AD 500. In ancient Israel, tribal affiliation was determined by patrilineal descent, as were the two castes of hereditary priests, the cohens and the levites. After the destruction of the temple, the cohens were left with little to do and power passed into the hands of the rabbinate. The rabbis established matrilineal descent as the basis of Jewish identity. It is sometimes suggested they did so in wise appreciation of the fact that maternal descent is a fact and paternal descent only a probability; but a modern scholar, Shaye Cohen of Harvard University, believes rabbinic tradition and the influence of Roman law are likelier reasons.313

  The patrilineal priestly tradition still exists, and has afforded geneticists another deep insight into Jewish history. Cohens and levites continue to carry out ceremonial roles in certain congregations. Cohens are called first to the reading of the Torah in synagogue, and are asked on special occasions to bless the congregation. (The cohen’s blessing, signaled by holding up the hand with a split between the middle and the ring fingers, is familiar to many non-Jews; it was adapted by Leonard Nimoy, who remembered seeing it as a boy in synagogue, as the Vulcan greeting for his role as Spock in Star Trek.)314

  Oral tradition holds that all cohens, or cohanim, are descended from Aaron, the brother of Moses and the first high priest. The Jewish priesthood is thought to have been established some 3,300 years ago and to have passed from father to son ever since. This fact was on the mind of Karl Skorecki, a medical researcher at the Technion-Israel Institute of Technology in Haifa, one morning when he was sitting in synagogue and the Torah was being read. The cohen doing the first reading was a Sephardic Jew. Skorecki, whose family is Ashkenazic, himself comes from a line of cohanim. The thought occurred to him that though he and the Sephardi differed strongly in physical appearance, they must both have inherited the same Y chromosome from Aaron, if oral tradition was correct.315

  Skorecki called Michael Hammer, the University of Arizona geneticist, who agreed with his inference and set about analyzing the Y chromosomes of cohanim from both the Ashkenazic and Sephardic communities. Despite the millennium or so for which the two communities have been separate, and the geographical distance between them, Hammer and his colleagues found that the cohanim of both groups did indeed possess a distinctive genetic signature.

  The signature is a set of DNA sequences at two specific sites on the Y chromosome. It is known as the cohen modal haplotype, a geneticist’s phrase meaning the set of DNA variations typical of cohens. The Hammer team detected the cohen modal haplotype in 45% of Ashkenazic cohanim and in 70% of Sephardic cohanim.316 The finding substantially confirmed the oral tradition that cohanim are descended from a single individual. This person was presumably a founding high priest and could perhaps have been Aaron himself if indeed there was an Aaron; some modern scholars believe the great patriarchs of Israel may have been more a part of legend than of history.317

  To learn more about when the ancestor of all the cohanim might have lived, another team of geneticists including Skorecki and David Goldstein has looked at the variations that have developed on the cohen modal haplotype. The Goldstein team estimates that about 106 generations must have occurred to account for the observed amount of variation that has built up on the cohen modal haplotype. Assuming 30 years per generation, this means the ancestor of the cohanim lived some 3,180 years ago (or 2,650 years ago, if a generation time of 25 years is preferred).318 A general date of about 3,000 years ago is of particular interest since it would place the first cohen at the beginning of First Temple Period of Jewish history.

  The fact that only 50% or so of cohens, depending on the population, carry the cohen Y chromosome means that the rest must result from a discrepancy, at some point in their lineage, between the biological father and the father of record. Adoption cannot be invoked since the priesthood cannot be transferred to adopted sons, which leaves infidelity as the explanation. But as with the case of the English Sykeses, it takes only a small rate of nonpaternity in each generation to produce a large proportion of males with discrepant paternity many generations later.

  Since the cohen lineage stretches back three times as far as that of the Sykeses, the fidelity of cohen wives must have been even higher. James Boster, an anthropologist at the University of Connecticut, calculates on the basis of the Skorecki team’s figures that the rate of nonpaternity was 1.2% per generation among Ashkenazic cohanim and 0.4% among Sephardic cohanim. (This estimate would of course not pick up any cases where a cohen’s wife had taken another cohen as her lover.)

  Such infidelity rates are extremely low compared with the nonpaternity rates of 5% and more that are assumed typical of contemporary Western societies. Boster and his colleagues ask how cohanim through the ages secured such exemplary fidelity from their wives without resorting to the coercive measures used by men in other societies, such as purdah or chastity belts. They point to Jewish law and custom, under which intercourse is regarded as ritually impure from the beginning of a woman’s menstruation until seven days after its end, whereupon it is the husband’s duty to make love to her. Indeed he must do so immediately on her return from the ritual cleansing bath. This sage religious obligation has a strong consequence on the biological plane: it ensures that first intercourse, after several days abstinence, coincides with the three day period of peak fertility prior to ovulation. “This practice, coupled with extreme sanction
s against adultery, . . . could account for these very high degrees of paternity certainty,” the researchers observe.319

  Levites, according to their genetics, have a more complicated story. Levites are a junior priesthood to the cohanim, with fewer duties and obligations. By tradition, levites consist of all male descendants of Levi who are not also cohanim. The exclusion arises because Levi, the third son of the patriarch Jacob, was also an ancestor of Aaron. About 4% of Jewish men are levites, the same proportion as are cohanim.

  The Y chromosomes of Ashkenazic and Sephardic levites show no particular similarity. So, unlike the case with the cohanim, there is no identifiable male levite lineage that precedes the Ashkenazi-Sephardi split. There is, however, a strong genetic signature common to 52% of Ashkenazic levites. It is a set of genetic variations belonging to a branch of the world Y chromosome tree known as R1a1. To judge by the amount of variation on these levite R1a1 chromosomes, the original ancestor seems to have entered the Jewish community about 1,000 years ago, roughly the time when Jewish settlement in northwest Europe began, in other words at the founding of the Ashkenazic community.320

  The geneticists who discovered the R1a1 signature among the levites, a team that included Skorecki, Hammer and Goldstein, note that outside the Jewish community the R1a1 chromosome is relatively common in the region north of Georgia, in the Caucasus, that was once occupied by the Khazar kingdom. The Khazars were a Turkic tribe whose king converted to Judaism in the eighth or ninth century AD.

 

‹ Prev