The Science of Discworld III - Darwin's Watch tsod-3

Home > Other > The Science of Discworld III - Darwin's Watch tsod-3 > Page 2
The Science of Discworld III - Darwin's Watch tsod-3 Page 2

by Terry Pratchett


  In her book Defending Science - Reason the philosopher Susan Haack illuminates the messiness of science with a simple metaphor, the crossword puzzle. Enthusiasts know that solving a crossword puzzle is a messy business. You don't solve the clues in numerical order and write them in their proper place, converging in an orderly manner to a correct -solution, unless, perhaps, it's a quick crossword and you're an expert. Instead, you attack the clues rather randomly, guided only by a vague feeling of which ones look easiest to solve (some people find anagrams easy, others hate them). You cross-check proposed answers against others, to make sure everything fits. You detect mistakes, rub them out, write in corrections.

  It may not sound like a rational process, but the end result is entirely rational, and the checks and balances - do the answers fit the clues, do the letters all fit together? - are stringent. A few mistakes may still survive, where alternative words fit both the clue and the words that intersect them, but such errors are rare (and arguably aren't really errors, just ambiguity on the part of the compiler).

  The process of scientific research, says Haack, is rather like solving a crossword puzzle. Solutions to nature's riddles arrive erratically and piecemeal. When they are cross-checked against other solutions to other riddles, sometimes the answers don't fit, and then something has to be changed. Theories that were once thought to be correct turn out to be nonsense and are thrown out. A few years ago, the best explanation of the origin of stars had one small flaw: it implied that the stars were older than the universe that contained them. At any given time, some of science's answers appear to be very solid, some less so, some are dubious ... and some are missing entirely.

  Again, it doesn't sound like a rational process, but it leads to a rational result. Indeed, all that cross-checking, backtracking, and revision increases our confidence in the result. Remembering, always, that nothing is proved to the hilt, nothing is final.

  Critics often use this confused and confusing process of discovery as a reason to discredit science. Those stupid scientists can't even agree among themselves, they keep changing their minds, everything they say is provisional - why should anyone else believe such a muddle? They thereby misrepresent one of science's greatest strengths by portraying it as a weakness. A rational thinker must always be prepared to change his or her mind if the evidence requires it. In science, there is no place for dogma. Of course, many individual scientists fall short of this ideal; they are only human. Entire schools of scientific thought can get trapped in an intellectual blind alley and go into denial. On the whole, though, the errors are eventually exposed - by other scientists.

  Science is not the only area of human thought to develop in this flexible way. The humanities do similar things, in their own manner. But science imposes this kind of discipline upon itself more strongly, more systematically, and more effectively, than virtually any other style of thinking. And it uses experiments as a reality check.

  Religions, cults, and pseudoscientific movements do not behave like that. It is extremely rare for religious leaders to change their minds about anything that is already in their Holy Book. If your beliefs are held to be revealed truth, direct from the mouth of God, it's tricky to admit to errors. All the more credit to the Catholics, then, for admitting that in Galileo's day they got it wrong about the Earth being the centre of the universe, and until recently they got it wrong about evolution.

  Religions, cults and pseudoscientific movements have a different agenda from science. Science, at its best, keeps lines of enquiry open. It is always seeking new ways to test old theories, even when they seem well established. It doesn't just look at the geology of the Grand Canyon and settle on the belief that the Earth is hundreds of millions of years old, or older. It cross-checks by taking new discoveries into account. After radioactivity was discovered, it became possible to obtain more accurate dates for geological events, and to compare those with the apparent record of sedimentation in the rocks. Many dates were then revised. When continental drift came in from left field, entirely new ways to find those dates arrived, and were quickly used. More dates were revised.

  Scientists - collectively - want to find their mistakes, so that they can get rid of them.

  Religions, cults, and pseudoscientific movements want to close down lines of enquiry. They want their followers to stop asking questions and accept the belief system. The difference is glaring. Suppose, for instance, that scientists became convinced that there was something worth taking seriously in the theories of Erich von Daniken, that ancient ruins and structures must have been the work of visiting aliens. They would then start asking questions. Where did the aliens come from? What sort of spaceships did they have? Why did they come here? Do ancient inscriptions suggest one kind of alien or many? What is the pattern to the visitations? Whereas believers in von Daniken's theories are satisfied with generic aliens, and ask no more. Aliens explain the ruins and structures - that's cracked it, problem solved.

  Similarly, to early proponents of divine design and their modern reincarnations creationism and `intelligent design', the latest quasireligious fad, once we know that living creatures were created (either by God, an alien, or an unspecified intelligent designer) then the problem is solved and we need look no further. We are not encouraged to look for evidence that might disprove our beliefs. Just things that confirm them. Accept what we tell you, don't ask questions.

  Ah, yes, but science discourages questions too, say the cults and religions. You don't take our views seriously, you don't allow that sort of question. You try to stop us putting our ideas into school science lessons as alternatives to your world view.

  To some extent, that's true - especially the bit about science lessons. But they are science lessons, so they should be teaching science. Whereas the claims of the cults and the creationists, and the closet theists who espouse intelligent design, are not science. Creationism is simply a theistic belief system and offers no credible scientific evidence whatsoever for its beliefs. Evidence for alien visitations is weak, incoherent, and most of it is readily explained by entirely ordinary aspects of ancient human culture. Intelligent design claims evidence for its views, but those claims fall apart under even casual scientific scrutiny, as documented in the 2004 books Why Intelligent Design Fails, edited by Matt Young and Taner Edis, and Debating Design, edited by William Dembski and Michael Ruse. And when people (none of the above, we hasten to point out) claim that the Grand Canyon is evidence for Noah's flood - a notorious recent incident - it's not terribly hard to prove them wrong.

  The principle of free speech implies that these views should not be suppressed, but it does not imply that they should be imported into science lessons, any more than scientific alternatives to God should be imported into the vicar's Sunday sermon. If you want to get your world view into the science lesson, you've got to establish its scientific credentials. But because cults, religions and alternative belief systems stop people asking awkward questions, there's no way they can ever get that kind of evidence. It's not only chance that is blind. The scientific vision of the planet that is currently our only home, and of the creatures with which we share it and the universe around it, has attained its present form over thousands of years. The development of science is mostly an incremental process, a lake of understanding filled by the constant accumulation of innumerable tiny raindrops. Like the water in a lake, the pool of understanding can also evaporate again - for what we think we understand today can be exposed as nonsense tomorrow, just as what we thought we understood yesterday is exposed as nonsense today. We use the word `understanding' rather than, `knowledge' because science is both more than, and less than a collection of immutable facts. It is more, in that it encompasses organising principles that explain what we like to think of as facts: the strange paths of the planets in the sky make perfect sense once you understand that planets are moved by gravitational forces, and that these forces obey mathematical rules. It is less, because what may look like a fact today may turn out tomorrow t
o have been a misinterpretation of something else. On Discworld, where obvious things tend to be true, a tiny and insignificant Sun does indeed revolve round the grand, important world of people. We used to think our world was like that too: for centuries, it was a `fact', and an obvious one, that the Sun revolved round the Earth.

  The big organising principles of science are theories, coherent systems of thought that explain huge numbers of otherwise isolated facts, which have survived strenuous testing deliberately designed to break them if they do not accord with reality. They have not been merely accepted as some act of scientific faith: instead, people have tried to falsify them - to prove them wrong - but have so far failed. These failures do not prove that the theory is true, because there are always new sources of potential discord. Isaac Newton's theory of gravitation, in conjunction with his laws of motion, was - and still is - good enough to explain the movements of the planets, asteroids and other bodies of the solar system in intricate detail, with high accuracy. But in some contexts, such as black holes, it has now been replaced by Albert Einstein's theory of general relativity.

  Wait a few decades, and something else will surely replace that. There are plenty of signs that all is not well at the frontiers of physics.

  When cosmologists have to postulate bizarre `dark matter' to explain why galaxies don't obey the known laws of gravity, and then throw in even weirder `dark energy' to explain why galaxies are moving apart at an increasing rate, and when the independent evidence for these two powers of darkness is pretty much non-existent, you can smell the coming paradigm shift.

  Most science is incremental, but some is more radical. Newton's theory was one of the great breakthroughs of science - not a shower of rain disturbing the surface of the lake, but an intellectual storm that unleashed a raging torrent. Darwin's Watch is about another intellectual storm: the theory of evolution. Darwin did for biology what Newton had done for physics, but in a very different way. Newton developed mathematical equations that let physicists calculate numbers and test them to many decimal places; it was a quantitative theory. Darwin's idea is expressed in words, not equations, and it describes a qualitative process, not numbers. Despite that, its influence has been at least as great as Newton's, possibly even greater. Darwin's torrent still rages today.

  Evolution, then, is a theory, one of the most influential, farreaching and important theories ever devised. In this context, it's worth pointing out that the word `theory' is often used in a quite different sense, to mean an idea that is proposed in order to be tested. Strictly speaking, the word that should be used here is `hypothesis', but that's such a fussy, pedantic-sounding word that people tend to avoid it. Even scientists, who should know better. `I have a theory,' they say. No, you have a hypothesis. It will take years, possibly centuries, of stringent tests, to turn it into a theory.

  The theory of evolution was once a hypothesis. Now it is a theory. Detractors seize on the word and forget its dual use. `Only a theory,' they say dismissively. But a true theory cannot be so easily dismissed, because it has survived so much rigorous testing. In this respect there is far more reason to take the theory of evolution seriously than any explanation of life that depends on, say, religious faith, because falsification is not high on the religious agenda. Theories, in that sense, are the best established, most credible parts of science. They are, by and large, considerably more credible than most other products of the human mind. So what these people are thinking of when they chant their dismissive slogan should actually be `only a hypothesis'.

  That was a defensible position in the early days of the theory of evolution, but today it is merely ignorant. If anything can be a fact, evolution is. It may have to be inferred from clues deposited in the rocks, and more recently by comparing the DNA codes of different creatures, rather than being seen directly with the naked eye in real time, but you don't need an eyewitness account to make logical deductions from evidence. The evidence, from several independent sources (such as fossils and DNA), is overwhelming. Evolution has been established so firmly that our planet makes no sense at all without it. Living creatures can, and do, change over time. The fossil record shows that they have changed substantially over long periods of time, to the extent that entirely new species have arisen. Smaller changes can be observed today, over periods as short as a year, or mere days in bacteria.

  Evolution happens.

  What remains open to dispute, especially among scientists, is how evolution happens. Scientific theories themselves evolve, adapting to fit new observations, new discoveries, and new interpretations of old discoveries. Theories are not carved in tablets of stone. The greatest strength of science is that when faced with sufficient evidence, scientists change their minds. Not all of them, for scientists are human and have the same failings as the rest of us, but enough of them to allow science to improve.

  Even today there are diehards - not a majority, despite the noise they make, but a significant minority - who deny that evolution has ever occurred. Most of them are American, because a quirk of history (coupled with some idiosyncratic tax laws) has made evolution into a major educational issue in the United States. There, the battle between Darwin's followers and his opponents is not just about the intellectual high ground. It is about dollars and cents, and it is about who influences the hearts and minds of the next generation. The struggle masquerades as a religious and scientific one, but its essence is political. In the 1920s four American states (Arkansas, Mississippi, Oklahoma, and Tennessee) made it illegal to teach children about evolution in public schools. This law remained in place for nearly half a century: it was finally banned by the Supreme Court in 1968. This has not stopped advocates of `creation science' from trying to find ways round that decision, or even to get it reversed. Largely, however, they have failed, and one reason is that creation `science' is not science; it lacks intellectual rigour, it fails objective tests, and at times it is plain nutty.

  It is possible to maintain that God created the Earth, and no one can prove you wrong. In that sense, it is a defensible thing to believe. Scientists may feel that this `explanation' doesn't greatly help us understand anything, but that's their problem; for all anyone can prove, it could have happened that way. But it is not sensible to follow the Anglo-Irish prelate James Ussher's biblical chronology and maintain that the act of creation happened in 4004 BC, because there is overwhelming evidence that our planet is far older than that - 4.5 billion years rather than 6000. Either God is deliberately trying to mislead us (which is conceivable, but does not fit well with the usual religious messages, and may well be heretical) or we are standing on a very old lump of rock. Allegedly, 50 per cent of Americans believe that the Earth was created less than 10,000 years ago, which if true says something rather sad about the most expensive education system in the world.

  America is fighting, all over again, a battle that was fought to a fmish in Europe a century ago. The European outcome was a compromise: Pope Pius XII did accept the truth of evolution in an encyclical of 1950, but that wasn't a total victory for science[6]. In 1981 a successor, John Paul II, gently pointed out that `The Bible ... does not wish to teach how the heavens were made, but how one goes to heaven.' Science was vindicated, in that the theory of evolution was generally accepted, but religious people were free to interpret that process as God's way of making living creatures. And it's a very good way, as Darwin realised, so everyone can be happy and stop arguing. Creationists, in contrast, seem not to have appreciated that if they pin their religious beliefs to a 6000-year-old planet, they are doing themselves no favours and leaving themselves no real way out.

  Darwin's Watch is about a Victorian society that never happened - well, once the wizards interfered, it stopped having happened. It is not the society that creationists are still attempting to arrange, which would be far more `fundamentalist', full of self-righteous people telling everyone else what to do and stifling any true creativity. The real Victorian era was a paradox: a society with a very strong but rath
er flexible religious base, where it was taken for granted that God existed, but which gave birth to a whole series of major intellectual revolutions that led, fairly directly, to today's secular Western society. Let us not forget that even in the USA there is a constitutional separation of the state from the Church. (Strangely, the United Kingdom, which in practice is one of the most secular countries in the world - hardly anyone attends church, except for christenings, weddings, and funerals - has its own state religion, and a monarch who claims to be appointed by God. Unlike Discworld, Roundworld doesn't have to make sense.) At any rate, the real Victorians were a God-fearing race, but their society encouraged mavericks like Darwin to think outside the loop, with far-reaching consequences.

  The thread of clocks and watches runs right across the metaphorical landscape of science. Newton's vision of a solar system running according to precise mathematical `laws' is often referred to as a `clockwork universe'. It's not a bad image, and the orrery - a model solar system, whose cogwheels make the tiny planets revolve in some semblance of reality - does look rather like a piece of clockwork. Clocks were among the most complicated machines of the seventeenth and eighteenth centuries, and they were probably the most reliable. Even today, we say that something functions `like clockwork'; we have yet to amend this to `atomic accuracy'.

 

‹ Prev