What trouble can this lead us into? And so generally; for assuredly the infinite multiplicity of shapes is adequate to explain all varieties of sensible objects.
My second supposition is that when the external sense
My third supposition is that the
My fourth supposition is that the power of movement, in fact the nerves, originate in the brain, where the phantasy is seated; and that the phantasy moves them in various ways, as the external sense
My fifth and last supposition is that the power of cognition properly so called is purely spiritual, and is just as distinct from the body as a whole as blood is from bone or a hand from an eye; and that it is a single power. Sometimes it receives images from the common sensibility at the same time as the phantasy does; sometimes it applies itself to the images preserved in memory; sometimes it forms new images, and these so occupy the imagination that often it is not able at the same time to receive ideas from the common sensibility, or to pass them on to the locomotive power in the way that the body left to itself -would. In all these processes the cognitive power is sometimes passive, sometimes active; it plays the part now of the seal, now of the wax; here, however, these expressions must be taken as merely analogical, for there is nothing quite like this among corporeal objects. The cognitive power is always one and the same; if it applies itself, along with the imagination, to the common sensibility, it is said to see, feel, etc.; if it applies itself to the imagination alone, in so far as that is already provided with various images, it is said to remember; if it does this in order to form new images, it is said to imagine or conceive; if, finally, it acts by itself, it is said to understand. (The manner of this last operation will be explained at more length in the proper place). In accordance with these diverse functions the same power is called now pure intellect, now imagination, now memory, now sense; and it is properly called mind (ingenium) when it is either forming new ideas in the phantasy or attending to those already formed. We regard it as capable of these various operations; and the distinction between these terms will have to be observed in what follows. In terms of these conceptions, the attentive reader will easily gather how we must seek to aid each faculty, and how far human endeavor can supply what is lacking to the mind.
For the understanding may be set in movement by the imagination, or on the other hand may set it in movement. Again the (organ of> imagination may act on the senses by means of the locomotive power, by applying them to their objects; or on the other hand they may act upon it, since it is upon it that they trace images (imagines) of bodies. Further, memory (considered, that is, as a corporeal faculty like the recollections of brutes) is nothing distinct from imagination. From this it is a certain inference that if the understanding is occupied with objects that have no corporeal or quasi-corporeal aspect, it cannot be aided by these faculties; on the contrary, we must prevent it from being hindered by them; sense must be banished, and imagination stripped (so far as possible) of every distinct impression. If, on the other hand, the understanding intends to examine something that can be referred to
We must now take the second point
In the first place, we must think differently when we regard things from the point of view of our knowledge and when we are talking about them as they are in reality. For example, take a body that has shape and extension. We shall admit that objectively there is one simple fact; we cannot call it, in this sense, ‘ a compound of the natures body, extension, and figure ‘, for these ‘ parts ‘ have never existed separate from one another. But in respect of our understanding we do call it a compound of these three natures; for we had to understand each one separately before judging that the three are found in one and the same subject. Now we are here concerned with things only in so far as they are perceived by the understanding; and so we use the term ‘ simple’ only for realities so clearly and distinctly known that we cannot divide any of them into several realities more distinctly known, for example, shape, extension, motion, etc.; and we conceive of everything else as somehow compounded out of these. This principle must be taken quite generally, without even excepting the concepts that we sometimes form by abstraction even from simple ones. For example, we may say that figure is the terminus of an extended thing, meaning by ‘terminus’ something more general than ‘figure’, since we may also say’ terminus of a duration’, ‘ terminus of a motion’, etc. But although in this case the meaning of ‘ terminus ‘ is abstracted from figure, it is not therefore to be regarded as simpler than figure; on the contrary, since it is predicated also of other things, e.g. the end of a duration or motion, which are wholly different in kind from figure
, it must have been abstracted from these too, and is thus something compounded out of quite diverse natures - in fact, its various applications to these are merely equivocal.
Secondly, the things that are termed simple (in relation to our understanding) are either purely intellectual, or purely material, or common
Further, among these simple natures I wish to count also privations or negations of them, in so far as we conceive of such; for my intuition of nothingness, an instant, or rest is not less genuine knowledge than my concept of existence, duration, or motion. This way of regarding them will be helpful, for it enables us to say by way of summary that everything else we get to know will be a compound of these simple natures; for example, if I judge that some figure is not moving, I shall say that my thought is in a way a compound of ‘ figure ‘ and ‘rest’; and so in other cases.
Thirdly, the knowledge of each of these simple natures is underived, and never contains any error. This is easily shown if we distinguish the intellectual faculty of intuitive knowledge from that of affirmative or negative judgment. For it is possible for us to think we do not know what in fact we do know; namely, we may be of opinion that besides the actual object of intuition, or what is grasped in our experience (cogitando), some further element hidden from us is involved, and this opinion (cogitatio) of ours may be false. Hence it is evident that we go wrong if we ever judge that one of these simple natures is not known to us in its entirety. For if our mind grasps the least thing to do with such a nature-as is necessary ex hypothesi if we are forming some judgment about it-this of itself entails that we know it in its entirety; otherwise it could not be termed simple, but would be compounded of the element perceived by us and the supposed unknown element.
Fourthly, the conjunction of these simple natures with one another is either necessary or contingent. It is necessary when one is implicitly contained in the concept of the other, so that we cannot distinctly conceive of either if we judge that they are separated; it is in this way that figure is conjoined with extension, motion with duration or time, etc., since an extensionless figure or a durationless motion is inconceivable. Again, if I say ‘four and three are seven ‘ this is a necessary conjunction; for we have no distinct concept of the number seven that does not implicitly include the numbers three and four. Similarly, any demonstrated property of figures or numbers is necessarily connected with that of which it is asserted. It is not only in the sensible world that we find this sort of necessity, but we have also cases like this: from Socrates’ assertion that he doubts everything there is a necessary consequence ‘ therefore he understands at least what he doubts ‘, or again ‘ therefore he knows that there is something that can be true or false ‘, or the like; for these are necessarily bound up with the nature of the doubt. A combination of natures is contingent when they are not conjoined by any inseparable relation; as when we say that a body is animated, that a man is clothed, etc. Many necessary conjunctions, moreover, are generally counted as contingent, because their real relation is generally unobserved, e.g. the proposition ‘ I am, therefore God is’, or again, ‘ I understand, therefore I have a mind distinct from the body’, and the like. Finally, it is to be observed that very many necessary propositions have contingent converses; e.g. although God’s existence is a certain conclusion from mine, my existence cannot be asserted on account of God’s existence.
Fifthly, we can never have any understanding of anything apart from these single natures and their blending or composition. It is often easier to attend to a conjunction of several than to separate out one from the others; for I may, e.g. know a triangle without ever having thought that this involves knowledge of angle, line, the number three, figure, extension, etc. But this in no way goes against our saying that the nature of a triangle is composed of all these natures, and that they are prior to ‘ triangle ‘ in the order of knowledge, since they are the very natures that are understood to occur in a triangle. Moreover, there may well be many other natures implicit in ‘triangle’ that escape our notice; e.g. the size of the angles (their being equal to two right angles), and an infinity of relations between the sides and the angles, the sides and the area, etc.
Sixthly, the natures called ‘compound’ are known to us either because we have experience (experimur) of them or because we ourselves compound them. By our experience I mean sense-perception, hearsay, and in general everything that is either brought to our understanding from outside or arises from its own self-contemplation. It must here be remarked that no experience can deceive the understanding if it confines itself to intuition of what is presented to it-of what it itself contains, or what is given by means of a brain-image-and does not go on to judge that imagination faithfully reproduces the objects of the senses, or that the senses give us true pictures (figures) of things, in short, that external things are always what they seem. On all such matters we are liable to go wrong; e.g. if somebody tells us a tale and we believe the thing happened; if a man suffering from jaundice thinks everything is yellow because his eye is suffused with yellow; if again, there is a lesion in the organ of imagination, as in melancholia, and we judge that the disordered images it produces represent real things. But the understanding a sage (sapientis)l will not be misled by such things; as regards any datum of the imagination, he will indeed judge that there really is such a picture in that faculty, but he will never assert that this picture has been transmitted in its entirety and unchanged from the external object to the senses and from the senses to the phantasy, unless he has antecedently had some other means of knowing this fact. I say that an object of understanding is ‘compounded by ourselves ‘ whenever we believe that something is involved in it that has not been directly perceived by the mind in experience. For example, the jaundiced man’s conviction that what he sees is yellow is a mental state (cogitatio) compounded of the representation in his phantasy and an assumption that he makes on his own account, viz. that the yellow color appears not through a defect in the eye but because what he sees really is yellow. From this we conclude that we can be deceived only so long as the object of our belief is, in a way, of our own compounding.
Seventhly, this ‘compounding’ may take place in three ways; on impulse, or from conjecture, or by deduction. People compound their judgments about things ‘on impulse’ when their own mind’ leads them to believe something without their being convinced by any reasoning; they are determined to do so either by a higher power, or by their own spontaneity, or by the disposition of the phantasy; the first never misleads, the second rarely, the third almost always. But the first does not concern us here, since it is not something attainable by our technique. The following is an example of conjecture: Water, which is further from the center than earth, is also rarer; air, which comes above water, is still more rare; we conjecture that above air there is only a very pure aether, far thinner even than air.
Views ‘compounded’ in this way are not misleading, so long as we regard them only as probable and never assert them as truth; they actually add to our stock of information.
There remains deduction-the only way of ‘compounding’ things so that we may be certain that the result is true. But even here all sorts of faults are possible. For example, from the fact that this region (which is full of air) contains nothing that we perceive by sight or touch or any other sense, we may conclude that it is empty, and thus wrongly conjoin the natures ‘ this region ‘ and ‘vacuum’. This error occurs whenever we judge that a general and necessary conclusion can be got from a particular or contingent fact. But it lies within our powers to avoid it; we can do so by never conjoining things unless we see intuitively that their conjunction is absolutely necessary, as we do when we infer that nothing can have shape without extension because shape has a necessary connexion with extension.
From all this the first conclusion to be drawn is that we have now set forth in a distinct way, and with what seems to me to be an adequate enumeration, the truth that we were previously able to establish only confusedly and roughly; viz. that there are no ways of attaining truth open to man except self-evident intuition and necessary inference; and it is moreover clear what ‘simple natures’ are. . . . It is obvious, furthermore, that the scope of intuition covers all these, and knowledge of their necessary connexions; and, in sum, covers everything that is comprised precisely in the experience (experitur) of the understanding, as a content either of its own or of the phantasy. About deduction. we shall say more in the sequel. . . .
For the rest, in case anybody should miss the interconnexion of my rules, I divide all that can be known into simple propositions and problems (quaestiones). As regards simple propositions, the only rules I give are those that prepare the mind for more distinct intuition and more sagacious examination of any given objects; for such propositions must come to one spontaneously-they cannot be sought for. This was the content of my first twelve Rules, and I think that in these I have set forth all that can facilitate the use of reason. As regards problems, they consist, first, of those that are perfectly understood, even if the solution is unknown; we shall deal exclusively with these in the next twelve Rules: 1 and, secondly, of those that are not perfectly understood; these we reserve for the last twelve. We have made this division on purpose, both in order to avoid having to speak of anything that presupposes an acquaintance with what follows, and also to teach those matters first which, in our view, should be studied first in developing our mental powers. Among ‘ problems perfectly understood’, be it observed, I count only those as regards which we see three things distinctly: first, the criteria for recognizing what we are looking for, when we come upon it; secondly, the precise premise from which to infer it; thirdly, the way to establish their interdependence-the impossibility of modifying one without the other. We must, then, be in possession of all the premises; nothing must remain to be shown except the way of finding the conclusion. This will not be a question of a single inference from a single simple premise (which, as I have said, can be performed without rules), but of a technique for deriving a single conclusion from many premises taken together without needing a greater mental capacity than for the simplest inference. These problems are for the most part abstract ones, and are almost confined to arithmetic and geometry; so novices may regard them as comparatively useless. But I urge the need of long use and practice in acquiring this technique for those who wish to attain a perfect mastery of the latter part of the Method, in which we shall treat of all these other matters.
Delphi Collected Works of René Descartes Page 3