The Lying Stones of Marrakech

Home > Other > The Lying Stones of Marrakech > Page 21
The Lying Stones of Marrakech Page 21

by Stephen Jay Gould


  In this manifesto, Cuvier reaches an opposite conclusion from the same valid argument about the blinding force of ordinary presuppositions. We are misled, Lyell had remarked, by the differential preservation of catastrophes in the geological record. Cuvier held, au contraire, that we become equally blinded by the humdrum character of daily experience. Most moments, Cuvier argues, feature no local wars or deaths, and certainly no global cataclysms. So we do not properly credit these potential forces as agents of history, even though one global paroxysm every few million years (and therefore rarely, if ever, observable in a human lifetime) can shape the pageant of life on earth. Cuvier writes:

  When the traveller voyages over fertile plains and tranquil waters that, in their courses, flow by abundant vegetation, and where the land, inhabited by many people, is dotted with flourishing villages and rich cities filled with proud monuments, he is never troubled by the ravages of war or by the oppression of powerful men. He is therefore not tempted to believe that nature has her internal wars, and that the surface of the globe has been overturned by successive revolutions and diverse catastrophes.

  I must now leave these two great geological gladiators, each using the same excellent tool of reason, to battle for his own particular theory about the earth’s behavior. I return then to the pillars of Pozzuoli, just down the road from the third-largest preserved amphitheater of the Roman world (where we may site those warriors for a closing image). When I visited in early January of the pre-millennial year of 1999,1 noticed a small, modern monument at one end of the Pozzuoli complex, a chipped and neglected slab of marble festooned with graffiti scrawled over a quotation with no identifying author. But I did copy the text as a good summary, less literary to be sure than the warring flourishes of Lyell or Cuvier, but equally eloquent in support of their common principle—a good guide to any scientist, and to any person who wishes to use the greatest human gift of independent reason against the presuppositions that bind us to columns of priestly or patriotic certainty, or to mountains of cultural stolidity:

  Cio che piu importa e che i popolo, gli uomini tutti, perdano gli istinti e le abitudini pecorili che la millenaria schiavitu ha loro ispirato ed apprendano a pensare ed agire liberamente.

  [What is most important, is that the populace, all people, lose the instincts and habits of the flock, which millennia of slavery have inspired in them, and learn to think and act in freedom.]

  4 In one of those odd coincidences that make writing, and intellectual life in general, such a joy, I happened to be reading, just two days after completing this essay, a volume of Francis Bacon’s complete works. I knew the old story about his death in 1626. Bacon, who loved to perform and report simple experiments of almost random import (his last and posthumous work, Sylva sylvarum [The forest of forests], lists exactly one thousand such observations and anecdotes), wanted to learn if snow could retard putrefaction. He therefore stopped his carriage on a cold winter day, bought a hen from a poultryman, and stuffed it with snow. He was then overtaken with a sudden chill that led to bronchitis. Too ill to reach London, Bacon sought refuge instead at the home of a friend, the earl of Arundel, where he died a few days later.

  But I had never read Bacon’s last and poignant letter, with its touching reference to Pliny the Elder’s similar demise in his boots—and, in the context of this essay, the ironic likeness of icy scenarios for endings: Pliny the Younger’s primary invocation of darkness, and Bacon’s literal encounter with cold:

  My very good lord,

  I was likely to have had the fortune of Caius Plinius the elder, who lost his life by trying an experiment about the burning of the mountain Vesuvius: for I was also desirous to try an experiment or two, touching on the conversion and induration of bodies. As for the experiment itself, it succeeded excellently well; but in the journey (between London and Highgate) I was taken with such a fit of casting [an old term for vomiting, from casting in the sense of “throwing out or up,” as in dice or a fishing line] as I know not whether it were the stone, or some surfeit [that is, kidney or gall stones, or overeating], or cold, or indeed a touch of them all three. But when I came to your lordship’s house, I was not able to go back, and therefore was forced to take up my lodging here…. I kiss your noble hands for the welcome…. I know how unfit it is for me to write to your lordship with any other hand than my own, but by my troth my fingers are so disjointed with this fit of sickness, that I cannot steadily hold a pen.

  8

  A Sly Dullard Named

  Darwin: Recognizing

  the Multiple Facets

  of Genius

  I.

  MOST YOUNG MEN OF HIS TIME COULD ONLY FANTAsize; but Charles Darwin experienced the overt drama of his century’s archetypal episode in a genre of personal stories that we now call “coming of age”: a five-year voyage of pure adventure (and much science), circumnavigating the globe on H.M.S. Beagle. Returning to England at age twenty-seven, Darwin became a homebody and never again left his native land, not even to cross the English Channel. Nonetheless, his subsequent life included two internal dramas far more intense, far more portentous, and (for anyone who can move beyond the equation of swashbuckling with excitement), far more thrilling than anything he had experienced as a world traveler: first, the intellectual drama of discovering both the factuality and mechanism of evolution; and second, the emotional drama of recognizing (and relishing) the revolutionary implications of his theory of natural selection, while learning the pain that revelation would impose upon both immediate family and surrounding society.

  What could possibly be more exciting than this story, set in London in 1837. The Beagle had docked a few months before, and Darwin now lived in town, where he courted the right contacts and worked on his specimens. He learned that his small Galápagos birds all belong to the family of finches, and not to several disparate groups, as he had thought. He never suspected this result, and had therefore not recorded the separate islands where he had collected these birds. (Theory always influences our style of collecting facts. As a creationist on the voyage itself, Darwin never imagined that the birds could have originated from a common source and then differentiated locally. According to the creationist view, all species must have been created “for” the Galápagos, and the particular island of discovery therefore held no importance. But in any evolutionary reading, and with all the birds so closely related, precise locality now mattered intensely.) He therefore tried to reconstruct the data from memory. Ironically (in view of the depth of their later enmity over evolution), he even wrote to Captain FitzRoy of the Beagle in order to get birds that his old boss had collected—and labeled much more carefully!

  On March 14, his ornithological consultant John Gould (no relation) presented a paper at the Zoological Society, showing that the small rhea, a large flightless bird, collected by Darwin in southern Patagonia, represented a new species, not merely a geographical variant as Darwin had thought. Gould heightened Darwin’s interest enormously by naming the bird Rhea darwinii. Janet Browne writes in her fine biography of Darwin:*

  This moment more than any other in Darwin’s life … deserves to be called a turning point. Darwin was tantalized by the week’s results. Why should two closely similar rheas agree to split the country between them? Why should different finches inhabit identical islets? The Galapagos iguana, he was further told by Thomas Bell, similarly divided themselves among the islands, and the heavily built tortoises with their individualized shells again came to mind.

  Darwin now made a key analogy. (Has any truly brilliant insight ever been won by pure deduction, and not by metaphor or analogy?) Darwin realized that the different species of finches and rheas each inhabited specific territories, each adjacent to the domain of another species. If both finches and rheas replaced each other geographically, then shouldn’t temporal succession also occur in continuity—that is, by evolution rather than successive creation? Darwin had collected important and entirely novel fossils of large mammals. He thought, and his ex
pert consultant Richard Owen had affirmed, that the fossils of one creature, later named Macrauchenia by Owen, stood close to the modern guanaco, a modern South American mammal closely related to the llama. Darwin experienced a key flash of insight and wrote in a small private notebook: “The same kind of relation that common ostrich [rhea] bears to Petisse [the new species Rhea danuinii], extinct guanaco to recent;in former case position, in latter time.”

  Darwin had not become an evolutionist during the Beagle voyage, but he had fallen under the spell of gradualism and uniformity in the earth’s development, a view identified with his intellectual hero, the English geologist Charles Lyell (see preceding chapter). Darwin, at this stage of his career, worked primarily as geologist, not a biologist. He wrote three books on geological subjects inspired by the Beagle voyage—on coral reefs, volcanic islands, and the geology of South America—but none strictly on zoology.

  Lyell, well apprised of Darwin’s beliefs and accomplishments, rejoiced at first in the prospect of a potential disciple, schooled in the field of nature. “How I long for the return of Darwin!” he wrote to Adam Sedgwick, Darwin’s old Cambridge geology teacher. Darwin and Lyell quickly became inseparable—in part as guru and disciple, in part simply as friends. Janet Browne writes of Lyell:

  Darwin was the first naturalist to use his “Principles” effectively: Lyell’s first, and in many ways his only fully committed disciple. “The idea of the Pampas going up at the rate of an inch in a century, while the western coast and Andes rise many feet and unequally, has long been a dream of mine,” Lyell excitedly scrawled to him in October. “What a field you have to write on! If you cannot get here for dinner, you must if possible join the evening party.”

  In other words, in these crucial weeks after the return of the Beagle, Darwin had reached evolution by a double analogy: between geographic and temporal variation, and between geological and biological gradualism. He began to fill notebook after notebook with cascading implications. He numbered these private volumes, starting with A for more factual matters of zoology, but describing a second set, M and N, as “full of metaphysics on morals and speculations on expression.” He drew a tree of life on one of the pages, and then experienced an attack of caution, writing with a linguistic touch from Beagle days: “Heaven knows whether this agrees with Nature—Cuidado [watch out].”

  I tell this story at some length both for its intrinsic excitement, and to present an interesting tidbit that has eluded previous historians, but that professional paleontologists must recognize and relish: for those who still cherish the myth that fact alone drives any good theory, I must point out that Darwin, at his key moment of insight—making his analogy from geography to time and evolution—chose an entirely false example to illustrate his correct principle! Macrauchenia is not, after all, an ancestor (or even a close relative) of guanacos, but a member of a unique and extinct South American mammalian group, the Litopterna. South America was an island continent—a kind of “Superaustralia” with a fauna even richer and more bizarre than Australia’s until the Isthmus of Panama rose just a few million years ago and joined the continent with North America. Several orders of large mammals, now extinct, had evolved there, including the litopterns, with lineages that converged by independent adaptation upon horses and camels of other continents.

  One may not wish to become as cavalier as Charles’s brother Erasmus, who considered The Origin of Species “the most interesting book” he had ever read, and who wrote of any factual discrepancy: “The a priori reasoning is so entirely satisfactory to me that if the facts won’t fit in, why so much for the facts is my feeling.” Still, beautiful (and powerful) theories can rarely be killed by “a nasty, ugly little fact” of T. H. Huxley’s famous statement—nor should major ideas be so destroyed in a recalcitrant world where reported “facts” so often turn out to be wrong. Fact and theory interact in wondrously complex, and often mutually reinforcing, ways. Theories unsupported by fact may be empty (and, if unsupportable in principle, meaningless in science): but we cannot even know where to look without some theory to test. As Darwin wrote in my favorite quotation: “How can anyone not see that all observation must be for or against some view if it is to be of any service.” Whatever the historical interest in this tale, and despite the irony of the situation, we do not denigrate Darwin’s achievement, or evolution’s truthful power, by noting that Darwin’s crucial analogy, at his moment of eureka, rested upon a factual error.

  This issue of interaction between fact and theory brings us to the core of fascination with Darwin’s biography. Darwin worked as an accumulator of facts nonpareil—in part because he had found the right theory and therefore knew where to look; in part as a consequence of his obsessive thoroughness; in part as a benefit of his personal wealth and connections. But he also developed one of the most powerful and integrative theoretical constructions—and surely the most disturbing to traditional views about the meaning of human life—in Western history: natural selection. How could Darwin accomplish so much? He seems so unlikely a candidate.

  II.

  In addition to general benefits conferred by wealth and access to influential circles, Darwin enjoyed specific predisposing advantages for becoming the midwife of evolution. His grandfather Erasmus had been a famous writer, physician, and freethinker. (In the first sentence of his preface to Mary Shelley’s Frankenstein, P. B. Shelley had, in order to justify Dr. Frankenstein’s experiment, alluded to Erasmus Darwin’s atheistical view on the possibility of quickening matter by electricity.) Erasmus died before Charles’s birth, but the grandson studiously read and greatly admired his grandfather’s writing—and Erasmus Darwin had been a thoroughgoing evolutionist. Charles studied medicine in Edinburgh, where he became close to his teacher Robert Grant, a committed Lamarckian evolutionist delighted to have Erasmus’s grandson as a student. And then, of course, Darwin enjoyed the grandest privilege of five years’ exposure to nature’s diversity aboard the Beagle. Still, he remained a creationist, if suffused with nascent doubt, when he returned to London in 1836.

  Some people display their brilliance in their cradles—as with Mill learning classics and Mozart writing symphonies almost before either could walk. We are not surprised when such men become “geniuses”; in fact, we expect such an eventual status, unless illness or idiosyncrasy conquers innate promise. But descriptions of Darwin’s early years could lead only to a prediction of a worthy, but undistinguished life. Absolutely nothing in any record documents the usual accoutrements of intellectual brilliance. Geniality and fecklessness emerge as Darwin’s most visible and distinctive traits. “He was so quiet,” Janet Browne writes, “that relatives found it difficult to say anything about his character beyond an appreciative nod towards an exceedingly placid temperament. Geniality was what was most often remembered by Darwin’s schoolfriends: the good-humored acquiescence of an inward-looking boy who did not appear much to mind whatever happened in life…. Some could barely remember Darwin when asked for anecdotes at the close of his life.”

  Darwin did develop a passion for natural history, expressed most keenly in his beetle collection—but so many children, then and now, become total devotees to such a hobby for a transient moment in a life leading elsewhere. No one could have predicted The Origin of Species from a childhood insect collection. Darwin performed as an indifferent student in every phase of his formal education. Sickened by the sight of blood, he abandoned medical studies in Edinburgh. His father became so frustrated when Charles quit Edinburgh that he admonished his son: “You care for nothing but shooting, dogs, and rat-catching, and you will be a disgrace to yourself and all your family.” Charles recounted the episode in his Autobiography, written late in life with characteristic Victorian distance and emotional restraint: “He was very properly vehement against my turning an idle sporting man, which then seemed my probable destination.”

  Robert Waring Darwin therefore sent his unpromising boy to Cambridge, where he could follow the usual course for unambitious
later-born sons and train for the sinecure of a local parsonage. Charles showed the same interest in religion that he manifested at the time for all other academic subjects save natural history—none at all. He went along, faute de mieux, in his usual genial and feckless way. He obtained the Victorian equivalent of a “gentleman’s C” degree, spending most of his time gambling, drinking, and hunting with his upper-class pals. He still planned to become a minister during the entire Beagle voyage—though I am quite sure that his thoughts always focused upon the possibilities for amateur work in natural history that such a job provided, and not at all upon the salvation of souls, or even the weekly sermon.

  The Beagle worked its alchemy in many ways, mostly perhaps in the simple ontogenetic fact that five years represents a lot of living during one’s mid-twenties and tends to mark a passage to maturity. Robert Waring Darwin, apprised by scientific colleagues of his son’s remarkable collections and insights, surrendered to the inevitable change from religion to science. Charles’s sister Susan wrote as the Beagle sailed home: “Papa and we often cogitate over what you will do when you return, as I fear there are but small hopes of your still going in the church—I think you must turn professor at Cambridge.”

  But the mystery remains. Why Darwin? No one thought him dull, but no one marked him as brilliant either. And no one discerned in him that primary emotional correlate of greatness that our modern age calls “fire in the belly.” Thomas Carlyle, a good judge, who knew both Darwin brothers Charles and Erasmus well, considered Erasmus as far superior in intelligence.

  I believe that any solution to this key puzzle in Darwinian biography must begin with a proper exegesis of intelligence—one that rejects Charles Spearman’s old notion of a single scalar quantity recording overall mental might (called g or general intelligence, and recently revived by Murray and Herrnstein as the central fallacy of their specious book, The Bell Curve—see the second edition of my book The Mismeasure of Man). Instead, we need a concept of intelligence defined as a substantial set of largely independent attributes. This primary alternative to g has its own long and complex history, from an extreme in misuse by the old phrenologists, to modern tenable versions initiated by Louis L. Thurstone and J. P. Guilford, and best represented today by the work of Howard Gardner.

 

‹ Prev