Guns, Germs, and Steel

Home > Other > Guns, Germs, and Steel > Page 14
Guns, Germs, and Steel Page 14

by Jared Diamond


  SO FAR, ALL the changes that I’ve described in the evolution of wild plants into crops involve characters that early farmers could actually notice—such as fruit size, bitterness, fleshiness, and oiliness, and fiber length. By harvesting those individual wild plants possessing these desirable qualities to an exceptional degree, ancient peoples unconsciously dispersed the plants and set them on the road to domestication.

  In addition, though, there were at least four other major types of change that did not involve berry pickers making visible choices. In these cases the berry pickers caused changes either by harvesting available plants while other plants remained unavailable for invisible reasons, or by changing the selective conditions acting on plants.

  The first such change affected wild mechanisms for the dispersal of seeds. Many plants have specialized mechanisms that scatter seeds (and thereby prevent humans from gathering them efficiently). Only mutant seeds lacking those mechanisms would have been harvested and would thus have become the progenitors of crops.

  A clear example involves peas, whose seeds (the peas we eat) come enclosed in a pod. Wild peas have to get out of the pod if they are to germinate. To achieve that result, pea plants evolved a gene that makes the pod explode, shooting out the peas onto the ground. Pods of occasional mutant peas don’t explode. In the wild the mutant peas would die entombed in their pod on their parent plants, and only the popping pods would pass on their genes. But, conversely, the only pods available to humans to harvest would be the nonpopping ones left on the plant. Thus, once humans began bringing wild peas home to eat, there was immediate selection for that single-gene mutant. Similar nonpopping mutants were selected in lentils, flax, and poppies.

  Instead of being enclosed in a poppable pod, wild wheat and barley seeds grow at the top of a stalk that spontaneously shatters, dropping the seeds to the ground where they can germinate. A single-gene mutation prevents the stalks from shattering. In the wild that mutation would be lethal to the plant, since the seeds would remain suspended in the air, unable to germinate and take root. But those mutant seeds would have been the ones waiting conveniently on the stalk to be harvested and brought home by humans. When humans then planted those harvested mutant seeds, any mutant seeds among the progeny again became available to the farmers to harvest and sow, while normal seeds among the progeny fell to the ground and became unavailable. Thus, human farmers reversed the direction of natural selection by 180 degrees: the formerly successful gene suddenly became lethal, and the lethal mutant became successful. Over 10,000 years ago, that unconscious selection for nonshattering wheat and barley stalks was apparently the first major human “improvement” in any plant. That change marked the beginning of agriculture in the Fertile Crescent.

  The second type of change was even less visible to ancient hikers. For annual plants growing in an area with a very unpredictable climate, it could be lethal if all the seeds sprouted quickly and simultaneously. Were that to happen, the seedlings might all be killed by a single drought or frost, leaving no seeds to propagate the species. Hence many annual plants have evolved to hedge their bets by means of germination inhibitors, which make seeds initially dormant and spread out their germination over several years. In that way, even if most seedlings are killed by a bout of bad weather, some seeds will be left to germinate later.

  A common bet-hedging adaptation by which wild plants achieve that result is to enclose their seeds in a thick coat or armor. The many wild plants with such adaptations include wheat, barley, peas, flax, and sunflowers. While such late-sprouting seeds still have the opportunity to germinate in the wild, consider what must have happened as farming developed. Early farmers would have discovered by trial and error that they could obtain higher yields by tilling and watering the soil and then sowing seeds. When that happened, seeds that immediately sprouted grew into plants whose seeds were harvested and planted in the next year. But many of the wild seeds did not immediately sprout, and they yielded no harvest.

  Occasional mutant individuals among wild plants lacked thick seed coats or other inhibitors of germination. All such mutants promptly sprouted and yielded harvested mutant seeds. Early farmers wouldn’t have noticed the difference, in the way that they did notice and selectively harvest big berries. But the cycle of sow / grow / harvest / sow would have selected immediately and unconsciously for the mutants. Like the changes in seed dispersal, these changes in germination inhibition characterize wheat, barley, peas, and many other crops compared with their wild ancestors.

  The remaining major type of change invisible to early farmers involved plant reproduction. A general problem in crop development is that occasional mutant plant individuals are more useful to humans (for example, because of bigger or less bitter seeds) than are normal individuals. If those desirable mutants proceeded to interbreed with normal plants, the mutation would immediately be diluted or lost. Under what circumstances would it remain preserved for early farmers?

  For plants that reproduce themselves, the mutant would automatically be preserved. That’s true of plants that reproduce vegetatively (from a tuber or root of the parent plant), or that are hermaphrodites capable of fertilizing themselves. But the vast majority of wild plants don’t reproduce that way. They’re either hermaphrodites incapable of fertilizing themselves and forced to interbreed with other hermaphrodite individuals (my male part fertilizes your female part, your male part fertilizes my female part), or else they occur as separate male and female individuals, like all normal mammals. The former plants are termed self-incompatible hermaphrodites; the latter, dioecious species. Both were bad news for ancient farmers, who would thereby have promptly lost any favorable mutants without understanding why.

  The solution involved another type of invisible change. Numerous plant mutations affect the reproductive system itself. Some mutant individuals developed fruit without even having to be pollinated, resulting in our seedless bananas, grapes, oranges, and pineapples. Some mutant hermaphrodites lost their self-incompatibility and became able to fertilize themselves—a process exemplified by many fruit trees such as plums, peaches, apples, apricots, and cherries. Some mutant grapes that normally would have had separate male and female individuals also became self-fertilizing hermaphrodites. By all these means, ancient farmers, who didn’t understand plant reproductive biology, still ended up with useful crops that bred true and were worth replanting, instead of initially promising mutants whose worthless progeny were consigned to oblivion.

  Thus, farmers selected from among individual plants on the basis not only of perceptible qualities like size and taste, but also of invisible features like seed dispersal mechanisms, germination inhibition, and reproductive biology. As a result, different plants became selected for quite different or even opposite features. Some plants (like sunflowers) were selected for much bigger seeds, while others (like bananas) were selected for tiny or even nonexistent seeds. Lettuce was selected for luxuriant leaves at the expense of seeds or fruit; wheat and sunflowers, for seeds at the expense of leaves; and squash, for fruit at the expense of leaves. Especially instructive are cases in which a single wild plant species was variously selected for different purposes and thereby gave rise to quite different-looking crops. Beets, grown already in Babylonian times for their leaves (like the modern beet varieties called chards), were then developed for their edible roots and finally (in the 18th century) for their sugar content (sugar beets). Ancestral cabbage plants, possibly grown originally for their oily seeds, underwent even greater diversification as they became variously selected for leaves (modern cabbage and kale), stems (kohlrabi), buds (brussels sprouts), or flower shoots (cauliflower and broccoli).

  So far, we have been discussing transformations of wild plants into crops as a result of selection by farmers, consciously or unconsciously. That is, farmers initially selected seeds of certain wild plant individuals to bring into their gardens and then chose certain progeny seeds each year to grow in the next year’s garden. But much of the transformation w
as also effected as a result of plants’ selecting themselves. Darwin’s phrase “natural selection” refers to certain individuals of a species surviving better, and / or reproducing more successfully, than competing individuals of the same species under natural conditions. In effect, the natural processes of differential survival and reproduction do the selecting. If the conditions change, different types of individuals may now survive or reproduce better and become “naturally selected,” with the result that the population undergoes evolutionary change. A classic example is the development of industrial melanism in British moths: darker moth individuals became relatively commoner than paler individuals as the environment became dirtier during the 19th century, because dark moths resting on a dark, dirty tree were more likely than contrasting pale moths to escape the attention of predators.

  Much as the Industrial Revolution changed the environment for moths, farming changed the environment for plants. A tilled, fertilized, watered, weeded garden provides growing conditions very different from those on a dry, unfertilized hillside. Many changes of plants under domestication resulted from such changes in conditions and hence in the favored types of individuals. For example, when a farmer sows seeds densely in a garden, there is intense competition among the seeds. Big seeds that can take advantage of the good conditions to grow quickly will now be favored over small seeds that were previously favored on dry, unfertilized hillsides where seeds were sparser and competition less intense. Such increased competition among plants themselves made a major contribution to larger seed size and to many other changes developing during the transformation of wild plants into ancient crops.

  WHAT ACCOUNTS FOR the great differences among plants in ease of domestication, such that some species were domesticated long ago and others not until the Middle Ages, whereas still other wild plants have proved immune to all our activities? We can deduce many of the answers by examining the well-established sequence in which various crops developed in Southwest Asia’s Fertile Crescent.

  It turns out that the earliest Fertile Crescent crops, such as the wheat and barley and peas domesticated around 10,000 years ago, arose from wild ancestors offering many advantages. They were already edible and gave high yields in the wild. They were easily grown, merely by being sown or planted. They grew quickly and could be harvested within a few months of sowing, a big advantage for incipient farmers still on the borderline between nomadic hunters and settled villagers. They could be readily stored, unlike many later crops such as strawberries and lettuce. They were mostly self-pollinating: that is, the crop varieties could pollinate themselves and pass on their own desirable genes unchanged, instead of having to hybridize with other varieties less useful to humans. Finally, their wild ancestors required very little genetic change to be converted into crops—for instance, in wheat, just the mutations for nonshattering stalks and uniform quick germination.

  A next stage of crop development included the first fruit and nut trees, domesticated around 4000 B.C. They comprised olives, figs, dates, pomegranates, and grapes. Compared with cereals and legumes, they had the drawback of not starting to yield food until at least three years after planting, and not reaching full production until after as much as a decade. Thus, growing these crops was possible only for people already fully committed to the settled village life. However, these early fruit and nut trees were still the easiest such crops to cultivate. Unlike later tree domesticates, they could be grown directly by being planted as cuttings or even seeds. Cuttings have the advantage that, once ancient farmers had found or developed a productive tree, they could be sure that all its descendants would remain identical to it.

  A third stage involved fruit trees that proved much harder to cultivate, including apples, pears, plums, and cherries. These trees cannot be grown from cuttings. It’s also a waste of effort to grow them from seed, since the offspring even of an outstanding individual tree of those species are highly variable and mostly yield worthless fruit. Instead, those trees must be grown by the difficult technique of grafting, developed in China long after the beginnings of agriculture. Not only is grafting hard work even once you know the principle, but the principle itself could have been discovered only through conscious experimentation. The invention of grafting was hardly just a matter of some nomad relieving herself at a latrine and returning later to be pleasantly surprised by the resulting crop of fine fruit.

  Many of these late-stage fruit trees posed a further problem in that their wild progenitors were the opposite of self-pollinating. They had to be cross-pollinated by another plant belonging to a genetically different variety of their species. Hence early farmers either had to find mutant trees not requiring cross-pollination, or had consciously to plant genetically different varieties or else male and female individuals nearby in the same orchard. All those problems delayed the domestication of apples, pears, plums, and cherries until around classical times. At about the same time, though, another group of late domesticates arose with much less effort, as wild plants that established themselves initially as weeds in fields of intentionally cultivated crops. Crops starting out as weeds included rye and oats, turnips and radishes, beets and leeks, and lettuce.

  ALTHOUGH THE DETAILED sequence that I’ve just described applies to the Fertile Crescent, partly similar sequences also appeared elsewhere in the world. In particular, the Fertile Crescent’s wheat and barley exemplify the class of crops termed cereals or grains (members of the grass family), while Fertile Crescent peas and lentils exemplify pulses (members of the legume family, which includes beans). Cereal crops have the virtues of being fast growing, high in carbohydrates, and yielding up to a ton of edible food per hectare cultivated. As a result, cereals today account for over half of all calories consumed by humans and include five of the modern world’s 12 leading crops (wheat, corn, rice, barley, and sorghum). Many cereal crops are low in protein, but that deficit is made up by pulses, which are often 25 percent protein (38 percent in the case of soybeans). Cereals and pulses together thus provide many of the ingredients of a balanced diet.

  As Table 7.1 (next page) summarizes, the domestication of local cereal / pulse combinations launched food production in many areas. The most familiar examples are the combination of wheat and barley with peas and lentils in the Fertile Crescent, the combination of corn with several bean species in Mesoamerica, and the combination of rice and millets with soybeans and other beans in China. Less well known are Africa’s combination of sorghum, African rice, and pearl millet with cowpeas and groundnuts, and the Andes’ combination of the noncereal grain quinoa with several bean species.

  Table 7.1 also shows that the Fertile Crescent’s early domestication of flax for fiber was paralleled elsewhere. Hemp, four cotton species, yucca, and agave variously furnished fiber for rope and woven clothing in China, Mesoamerica, India, Ethiopia, sub-Saharan Africa, and South America, supplemented in several of those areas by wool from domestic animals. Of the centers of early food production, only the eastern United States and New Guinea remained without a fiber crop.

  TABLE 7.1. Examples of Early Major Crop Types around the

  Ancient World

  The table gives major crops, of five crop classes, from early agricultural sites in various parts of the world. Square brackets enclose names of crops first domesticated elsewhere; names not enclosed in brackets refer to local domesticates. Omitted are crops that arrived or became important only later, such as bananas in Africa, corn and beans in the eastern United States, and sweet potato in New Guinea. Cottons are four species of the genus Gossypium, each species being native to a particular part of the world; squashes are five species of the genus Cucurbita. Note that cereals, pulses, and fiber crops launched agriculture in most areas, but that root and tuber crops and melons were of early importance in only some areas.

  Alongside these parallels, there were also some major differences in food production systems around the world. One is that agriculture in much of the Old World came to involve broadcast seeding and monocul
ture fields, and eventually plowing. That is, seeds were sown by being thrown in handfuls, resulting in a whole field devoted to a single crop. Once cows, horses, and other large mammals were domesticated, they were hitched to plows, and fields were tilled by animal power. In the New World, however, no animal was ever domesticated that could be hitched to a plow. Instead, fields were always tilled by hand-held sticks or hoes, and seeds were planted individually by hand and not scattered as whole handfuls. Most New World fields thus came to be mixed gardens of many crops planted together, rather than monoculture.

  Another major difference among agricultural systems involved the main sources of calories and carbohydrates. As we have seen, these were cereals in many areas. In other areas, though, that role of cereals was taken over or shared by roots and tubers, which were of negligible importance in the ancient Fertile Crescent and China. Manioc (alias cassava) and sweet potato became staples in tropical South America, potato and oca in the Andes, African yams in Africa, and Indo-Pacific yams and taro in Southeast Asia and New Guinea. Tree crops, notably bananas and breadfruit, also furnished carbohydrate-rich staples in Southeast Asia and New Guinea.

  THUS, BY ROMAN times, almost all of today’s leading crops were being cultivated somewhere in the world. Just as we shall see for domestic animals too (Chapter 9), ancient hunter-gatherers were intimately familiar with local wild plants, and ancient farmers evidently discovered and domesticated almost all of those worth domesticating. Of course, medieval monks did begin to cultivate strawberries and raspberries, and modern plant breeders are still improving ancient crops and have added new minor crops, notably some berries (like blueberries, cranberries, and kiwifruit) and nuts (macadamias, pecans, and cashews). But these few modern additions have remained of modest importance compared with ancient staples like wheat, corn, and rice.

 

‹ Prev