W. T. Sullivan, J. A. Baross (eds). Planets and Life: The Emerging Science of Astrobiology. (Cambridge: Cambridge University Press, 2007).
The development of astrobiology from the 1950s onwards is described by: S. J. Dick, J. E. Strick. The Living Universe: NASA and the Development of Astrobiology. (New Brunswick, NJ: Rutgers University Press, 2004).
An old classic on the nature of life is: E. Schrödinger. What Is Life? (1944; Cambridge: Cambridge University Press, 2012).
Chapter 2: From stardust to planets, the abodes for life
A readable discussion of modern Big Bang theory is given by: C. Lineweaver, T. Davis. 2005. Misconceptions about the Big Bang. Scientific American 292: 36–45.
A popular account of Arthur Holmes’s quest to find the age of the Earth is: C. Lewis. The Dating Game: One Man’s Search for the Age of the Earth. (Cambridge: Cambridge University Press, 2012).
Chapter 3: Origins of life and environment
The science of the origin of life is described by: R. M. Hazen. Genesis: The Scientific Quest for Life’s Origin. (Washington, DC: Joseph Henry Press, 2005).
A lucid description of the early evolution of life on Earth is: A. H. Knoll. Life on a Young Planet: The First Three Billion Years of Evolution on Earth. (Princeton: Princeton University Press, 2003).
Chapter 4: From slime to the sublime
The Earth’s formation, evolution, and habitability are covered in: C. H. Langmuir, W. S. Broecker. How to Build a Habitable Planet: The Story of Earth from the Big Bang to Humankind. (Princeton: Princeton University Press, 2012).
Chapter 5: Life: a genome’s way of making more and fitter genomes
A widely used introductory textbook on modern microbiology is: M. T. Madigan et al. Brock Biology of Microorganisms. (San Francisco: Benjamin Cummings, 2012).
The effects of life on the Earth’s chemistry on a global level are described in the following textbook: W. H. Schlesinger, E. S. Bernhardt. Biogeochemistry, Third Edition: An Analysis of Global Change. (San Diego: Academic Press, 2013).
Chapter 6: Life in the Solar System
The planets of the Solar System and their habitability are described in the following textbook: J. J. Lissauer, I. de Pater. Fundamental Planetary Science: Physics, Chemistry and Habitability. (Cambridge: Cambridge University Press, 2013).
Chapter 7: Far-off worlds, distant suns
A readable book that discusses the search for habitable exoplanets is: J. F. Kasting. How to Find a Habitable Planet. (Princeton: Princeton University Press, 2010).
Chapter 8: Controversies and prospects
The controversial but engrossing book that argues for the scarcity of complex life is: P. D. Ward, D. Brownlee. Rare Earth: Why Complex Life is Uncommon in the Universe. (New York: Copernicus, 2000).
Index
A
acetylene on Titan 106
adaptive optics 113
aeons on Mars 90
age of the Earth 25–6
albedo of the Earth 56
Aldebaran (star) 18, 20
ALH84001 meteorite 98–9
Alpha-Centauri B 112
alteration minerals 93–4
aluminium-26 atoms 22–3
Ames Research Center 1
amino acids 76
ammonia (NH3) 12, 107–9
Andromeda galaxy 15
anti-biosignatures 119
Apex Chert rock formation, Australia 42
archaea 66–9, 76, 78, 80
Archaean aeon 32, 41, 46–8, 50–1
Aristotle 3
asteroid impacts 2, 24, 25, 30, 61–2, 96, 126 (see also meteorites)
astrometry 111
atmosphere 84–5
on Earth 28, 32–4, 44–53, 54, 55, 118–19, 125
on exoplanets 59, 117–19
on Mars 84, 85, 89–90, 94–6, 97
on Pluto 108
on Titan (moon of Saturn) 103–4
on Triton (moon of Neptune) 107
on Venus 84, 85–8
atoms common to life 9–10
ATP (adenosine triphosphate) 35
B
bacteria 66–9, 75–6, 78, 98 (see also cyanobacteria)
survival in extreme heat 79–80
banded iron formations 50
Bernal, J. Desmond 6
Betelgeuse 19
Big Bang 14, 16–17
bioastronomy 5–6
biomarkers 42–3, 54
biomass 49, 63–4, 102, 108
biomolecules 70–1, 73
chirality 37–9
biosignatures 118–19
biospheres 60, 63–5, 115, 121
black dwarfs 19
black holes 20
body structures 60
‘boring billion’ 53–5
brain mass, proportional 122–3
Brasier, Martin 42
Brock, Thomas 79–80
Brownlee, Don 125
Budyko, Mikhail 56
Buick, Roger 40
C
Callisto (moon of Jupiter) 102
Cambrian Explosion 54, 59, 60
cap carbonates 57
carbohydrates 71, 78
carbon, organic 10, 33–6, 39–40, 42, 50–52, 55, 74
carbon assimilation experiment 96
carbon-based life 9–10
carbon dioxide 11, 32, 34
in the Earth’s atmosphere 45–7, 51, 57
greenhouse effect 45–8, 85–6, 95, 116
in the habitable zone 117, 129
on Mars 84, 85, 89, 94–6
on Venus 84, 85, 86
carbonate–silicate cycle 47–8
Cassini–Huygens mission 104–5
cells 58, 65–70, 78
circulation 8
Ceres (largest asteroid) 83, 99
Charon (moon of Pluto) 108
chemical elements 65
chemical weathering 93
chemiosmosis 35
chemoheterotrophs 74–5
Chicxulub, Mexico 61–2
chirality 37–9
Chiron 29–30
chlorine 58–9
chromosomes 69–70
Chyba, Christopher 9
Cleland, Carol 9
climate
on Mars 94–6
regulation 47–8
CO2 see carbon dioxide
Cocconi, Guiseppe 120
coherent energy 6–7
continents, formation 28–9
continuously habitable zone (CHZ) 115
convergent evolution 122
Copernican Principle 125–6
coronograph 113
Cosmic Connection (Sagan) 13
Cosmic Microwave Background 16–17
cosmobiology 6
Cosmotheoros (Huygens) 4
Creataceous–Paleogene mass extinction 61–2
Crick, Francis 72
cryovolcanism 107–8
Curiosity Rover 89–90
cyanobacteria 42–3, 49–50, 68–9, 76
D
Darwin, Charles 8–9, 31, 126
Dawn mission 99
definition of astrobiology 1–2, 5
Democritus 3
density of exoplanets 114–15
direct detection of exoplanets 113–15
dissipative structures 8
DNA 32–3, 36, 69–70, 71–3
DNA sequencing 77–8
Doppler shift 111–12
Drake, Frank (Drake Equation) 120–22
dropstones 56
dust particles 10
dwarfs 19–21, 106, 116–17
E
Earth 84
age 25–6
atmosphere 28, 32–4, 44–53, 54, 55, 118–19, 125
basis of life 9, 12, 63–70
earliest aeon 28–36
development of intelligent life 122, 124
mass extinctions 60–2
origin of life 1–2, 31–43
as a ‘Pale Blue Dot’ 118
position 14–15, 26–7r />
Snowball Earth hypothesis 55–8
uniqueness 3–4, 125–7
Ediacarans 54
Einstein, Albert 113
elements
chemical 65
common to life 9–10, 89
isotopes 22–3, 25–6
non-metallic 12
in stars 17–18, 19, 21, 117
enantiomers 38–9
Enceladus (moon of Saturn) 103, 128
Encephalization Quotient (EQ) 122–3
endosymbiosis 69
energy 6–9, 87, 106
infrared 45
life-giving 65
metabolic 35, 58, 73–5
in photons 18
precursor for life 58
entropy 6–8
eukaryotes 59, 66–70, 76, 78, 80
Europa (moon of Jupiter) 100–2, 128–9
ice on 2–3
European Space Agency 114
evolution 8–9, 48, 75
during ‘boring billion’ 53–5
chemical 31
convergent 122
diversity in 60
exobiology 5
exoplanets 3, 24–5
atmosphere on 59, 117–19
detection 110–15
evidence of life on 115–19
intelligent life on 120–4
expansion of the universe 16–17
extinctions, mass 60–2
extraterrestrial intelligence (SETI) 120–4
extraterrestrial life evidence of 2–3, 4
intelligent 120–4
likelihood of carbon base 9–10
likelihood of silicon base 10–11
probability 16
significance 12–13
theories about 3–4
extremophiles 79–81
F
faint young Sun paradox 44–5
Fermi, Enrico (Fermi Paradox) 123–4
fluorine 58–9
fossils 41–2, 53–4, 98
G
G-type stars 125–6
galactic filaments 16
galactic habitable zone (GHZ) 15, 117–18, 126
galaxies 15–16
birth of 17
Galilean moons of Jupiter 99–102
Galileo 126
Galileo spacecraft 2–3, 101, 118
gametes 69–70
Ganymede (moon of Jupiter) 102
gas chromatograph mass spectrometer (Viking lander) 97
gas exchange experiment (Viking lander) 96–7
gas giants 23–4
gene transfers 77, 79
genetics 75–9
genomes 8, 36–7
giant impact hypothesis 26
giant planets 23–4
glaciations 55–8
Great Oxidation Event 48–53
greenhouse effect 45–8, 85–6, 116
on Mars 95
gullies on Mars 91
H
habitable zone (HZ) 115–17
Hadean aeon 28–36
Haldane, J. B. S. 32
half-life 22, 25
Hawking, Stephen 126
helium 17–18, 20
Herrmann, Joachim 5
Hertzsprung–Russell (H–R) diagram 20–21
Holmes, Arthur 25–6
homochirality 39
Hooker, Joseph 31
hot Jupiters 24–5, 110, 112
Hubble, Edwin 16
Huntress, Wes 5
Huygens, Christiaan 4, 104–5
hydrocarbons on Titan 106
hydrogen 17, 20, 52–3, 88
hydrogen bombs 18
hydrogen peroxide 90
hydrothermal vents 34–5, 42
I
ice
density 11–12
on Europa (moon of Jupiter) 2–3
formation 55–7
ice giants 23–4
impact erosion 96
impacts with Earth 28–30, 33–4, 61–2
indirect detection of exoplanets 110–13
infrared radiation 45–6, 87, 93
inner planets, water on 84
intelligent life on exoplanets 120–4
interferometry 114
intraterrestrial life 64
Io (moon of Jupiter) 100
iron 50, 51
iron-60
atoms 23
isotopes 22–3
radioactive 25–6
Isua, Greenland 39–40
J
Jupiter 65, 85
formation 24
moons 2–3, 99–102, 128–9
orbit 111
as protection for Earth 126–7
resonance with Saturn 30
K
K stars 116
Kant, Immanuel 4, 22
Kelvin scale 20
Kepler, Johannes 3–4
Kepler mission 112–13, 126
Kirschvink, Joe 57
Klein, Harold ‘Chuck’ 97
Kuiper Belt objects (KBOs) 107, 108
L
labelled release experiment 97
Lafleur, Laurence 4–5
Lake Vostok, Antarctica 80–1
Laplace, Simon-Pierre (Marquis de Laplace) 22
Laplace resonance 100
Late Heavy Bombardment 30, 39
lead isotopes, age 25–6
Lederberg, Joshua 5
life
characteristics 6–9
origin on Earth 31–43
precursors 58–9, 65
light
bending 113
cancelling 114
light years 15
lightning, creation of organic molecules 32
Linnaeus, Carolus 66
lipids 71
liquid water 10, 11–12, 65, 82–6, 89, 90–6, 99–103, 106, 115–16, 119
Local Group 15
Lowell, Percival 4
M
M dwarfs 116–17
MacGregor, Alexander 32
magnesium-26 atoms 22–3
magnetic field 56
on Europa 101
magnetite 56, 98–9
main sequence 20–1, 44, 115–16
Mariner missions to Mars 88–9
Mars 84–6, 88–99
in the habitable zone 116
intelligent life 4
signs of ancient life 2
Mars Exploration Rovers 94
Mars Science Laboratory see Curiosity Rover
mass extinctions 60–2
Mayor, Michel 111–12
medium for biochemical processes 11
Mercury 84–5
messenger RNA (mRNA) 73
metabolism 35, 58, 73–5
metallicity of stars 117–18
meteorites 25, 33–4 (see also asteroid impacts)
age 26
from Mars 97–9
methane 55, 90
atmospheric 46–7
on Titan 104–6
Methanopyrus kandleri 80
Metrodorus 3
microbes 64–5, 127
extraterrestrial 2
gene transfer 77, 79
survival in extreme heat 29, 79–80
microbial conjugation 69
microbial mats 40–1
microfossils 41–2, 98
microlensing 113
Milky Way galaxy 15, 16
Miller, Stanley 32–3
Mitchell, Peter 35
molecular clocks 78–9
molecules, organic 42–3
Moon 14
craters 30
formation 26–7, 28
Morrison, Philip 120
Murchison meteorite 33
N
NASA 1, 2, 5, 88–9, 99, 101, 112, 114, 118, 126
natural selection 8, 75
Nazca plate, South Pacific 47
nebular hypothesis 22–3, 25
negative entropy 7
Neoproterozoic glaciations 55, 56, 57
Neptune
distance 15
formation 24
&nbs
p; moons 106–8
orbits 30
neutrons 19
Nice model 30
non-metallic elements 12
North Pole, Australia 40–1
nuclear fusion 17–18, 19, 21
nucleotides 71–3
O
oceanic plates 47
Of the Plurality of Worlds (Whewell) 4
Oort Cloud 126
Oparin, Alexander 32
organic carbon 10, 33–6, 39–40, 42, 50–2, 55, 74
organic molecules 32–6
origin of life on Earth 31–43
Orion Arm of the Milky Way 15
outflow channels on Mars 91–3
oxygen 32
on Europa 102
on exoplanets 127
levels 48–53, 54, 55
precursor for life 58–9
oxygenation time 59
ozone layer 52
P
PAHs (polycyclic aromatic hydrocarbons) 98
‘Pale Blue Dot’ 118
Paleaoproterozoic glaciations 55, 56, 57
panspermia 31
Patterson, Clair 26
Pauling, Linus 7, 78
PCR (polymerase chain reaction) technology 80
Pelagibacter ubique 64–5
Permian–Triassic mass extinction 61
Phanerozoic Aeon 54
photons in the Sun 18
photosynthesis 49–51
phylogeny 77–9
Pikaia 54
planetary embryos 24
planetary migration 25
planetary nebulae 18–19
planetesimals 24
plate tectonics 48, 127
Plato 3
pluralism 3
Pluto 108–9
primeval lead 26
primordial soup 32
prokaryotes 67–8
protein synthesis 77
proteins 71, 76
Proterozoic Aeon 55
proton gradient 35
Proxima Centauri 15
Q
Queloz, Didier 111–12
R
racemic mixture 38
radial velocity method 111
radioactive isotopes 25–6
radiogenic heat 101
Rare Earth Hypothesis 125–7
recombination 70
red dwarfs 21
red giants 18
red supergiants 19
redox titration 53
reductants 52
ribosomes 68
in RNA (rRNA) 77
RNA 36–7, 39, 71–3, 77
rocky planets 21, 23
runaway greenhouse effect on Venus 86–7
runaway limit 87–8
S
Sagan, Carl 13, 14, 127
sample return missions 128–9
Saturn
formation 24
moons 82, 102–6, 129
orbit 111
resonance with Jupiter 30
Astrobiology_A Very Short Introduction Page 14