by Brian Greene
Who Is Moving, Anyway?
The relativity of motion is both the key to understanding Einstein's theory and a potential source of confusion. You may have noticed that a reversal of perspective interchanges the roles of the "moving" muons, whose watches we have argued run slowly, and their "stationary" counterparts. Just as both George and Gracie had an equal right to declare that they were stationary and that the other was moving, the muons we have described as being in motion are fully justified in proclaiming that, from their perspective, they are motionless and that it is the "stationary" muons that are moving, in the opposite direction. The arguments presented can be applied equally well from this perspective, leading to the seemingly opposite conclusion that watches worn by the muons we christened as stationary are running slow compared with those worn by the muons we described as moving.
We have already met a situation, the signing ceremony with the light bulb, in which different viewpoints lead to results that seem to be completely at odds. In that case we were forced by the basic reasoning of special relativity to give up the ingrained idea that everyone, regardless of state of motion, agrees about which events happen at the same time. The present incongruity, though, appears to be worse. How can two observers each claim that the other's watch is running slower? More dramatically, the different but equally valid muon perspectives seem to lead us to the conclusion that each group will claim that it is the other group that dies first. We are learning that the world can have some unexpectedly strange features, but we would hope that it does not cross into the realm of logical absurdity. So what's going on?
As with all apparent paradoxes arising from special relativity, under close examination these logical dilemmas resolve to reveal new insights into the workings of the universe. To avoid ever more severe anthropomorphizing, let's switch from muons back to George and Gracie, who now, in addition to their flashing lights, have bright digital clocks on their spacesuits. From George's perspective, he is stationary while Gracie with her flashing green light and large digital clock appears in the distance and then passes him in the blackness of empty space. He notices that Gracie's clock is running slow in comparison to his (with the rate of slowdown depending on how fast they pass one another). Were he a bit more astute, he would also note that in addition to the passage of time on her clock, everything about Gracie—the way she waves as she passes, the speed with which she blinks her eyes, and so on—is occurring in slow motion. From Gracie's perspective, exactly the same observations apply to George.
Although this seems paradoxical, let's try to pinpoint a precise experiment that would reveal a logical absurdity. The simplest possibility is to arrange things so that when George and Gracie pass one another they both set their clocks to read 12:00. As they travel apart, each claims that the other's clock is running slower. To confront this disagreement head on, George and Gracie must rejoin each other and directly compare the time elapsed on their clocks. But how can they do this? Well, George has a jetpack that he can use, from his perspective, to catch up with Gracie. But if he does this, the symmetry of their two perspectives, which is the cause of the apparent paradox, is broken since George will have undergone accelerated, non-force-free motion. When they rejoin in this manner, less time will indeed have elapsed on George's clock as he can now definitively say that he was in motion, since he could feel it. No longer are George's and Gracie's perspectives on equal footing. By turning on the jet-pack, George relinquishes his claim to being at rest.
If George chases after Gracie in this manner, the time difference that their clocks will show depends on their relative velocity and the details of how George uses his jet-pack. As is by now familiar, if the speeds involved are small, the difference will be minuscule. But if substantial fractions of light speed are involved, the differences can be minutes, days, years, centuries, or more. As one concrete example, imagine that the relative speed of George and Gracie when they pass and are moving apart is 99.5 percent of light speed. Further, let's say that George waits 3 years, according to his clock, before firing up his jet-pack for a momentary blast that sends him closing in on Gracie at the same speed that they were previously moving apart, 99.5 percent of light speed. When he reaches Gracie, 6 years will have elapsed on his clock since it will take him 3 years to catch her. However, the mathematics of special relativity shows that 60 years will have elapsed on her clock. This is no sleight of hand: Gracie will have to search her distant memory, some 60 years before, to recall passing George in space. For George, on the other hand, it was a mere 6 years ago. In a real sense, George's motion has made him a time traveler, albeit in a very precise sense: He has traveled into Gracie's future.
Getting the two clocks back together for direct comparison might seem to be merely a logistical nuisance, but it is really at the heart of the matter. We can imagine a variety of tricks to circumvent this chink in the paradox armor, but all ultimately fail. For instance, rather than bringing the clocks back together, what if George and Gracie compare their clocks by cellular telephone communication? If such communication were instantaneous, we would be faced with an insurmountable inconsistency: reasoning from Gracie's perspective, George's clock is running slow and hence he must communicate less elapsed time; reasoning from George's perspective, Gracie's clock is running slow and hence she must communicate less elapsed time. They both can't be right, and we would be sunk. The key point of course is that cell phones, like all forms of communication, do not transmit their signals instantaneously. Cell phones operate with radio waves, a form of light, and the signal they transmit therefore travels at light speed. This means that it takes time for the signals to be received—just enough time delay, in fact, to make each perspective compatible with the other.
Let's see this, first, from George's perspective. Imagine that every hour, on the hour, George recites into his cell phone, "It's twelve o'clock and all is well," "It's one o'clock and all is well," and so forth. Since from his perspective Gracie's clock runs slow, at first blush he thinks that Gracie will receive these messages prior to her clock's reaching the appointed hour. In this way, he concludes, Gracie will have to agree that hers is the slow clock. But then he rethinks it: "Since Gracie is receding from me, the signal I send to her by cell phone must travel ever longer distances to reach her. Maybe this additional travel time compensates for the slowness of her clock." George's realization that there are competing effects—the slowness of Gracie's clock vs. the travel time of his signal—inspires him to sit down and quantitatively work out their combined effect. The result he finds is that the travel time effect more than compensates for the slowness of Gracie's clock. He comes to the surprising conclusion that Gracie will receive his signals proclaiming the passing of an hour on his clock after the appointed hour has passed on hers. In fact, since George is aware of Gracie's expertise in physics, he knows that she will take the signal's travel time into account when drawing conclusions about his clock based on his cell phone communications. A little more calculation quantitatively shows that even taking the travel time into account, Gracie's analysis of his signals will lead her to the conclusion that George's clock ticks more slowly than hers.
Exactly the same reasoning applies when we take Gracie's perspective, with her sending out hourly signals to George. At first the slowness of George's clock from her perspective leads her to think that he will receive her hourly messages prior to broadcasting his own. But when she takes into account the ever longer distances her signal must travel to catch George as he recedes into the darkness, she realizes that George will actually receive them after sending out his own. Once again, she realizes that even if George takes the travel time into account, he will conclude from Gracie's cell phone communications that her clock is running slower than his.
So long as neither George nor Gracie accelerates, their perspectives are on precisely equal footing. Even though it seems paradoxical, in this way they both realize that it is perfectly consistent for each to think the other's clock is running slow.
/> Motion's Effect on Space
The preceding discussion reveals that observers see moving clocks ticking more slowly than their own-that is, time is affected by motion. It is a short step to see that motion has an equally dramatic effect on space. Let's return to Slim and Jim on the drag strip. While in the showroom, as we mentioned, Slim had carefully measured the length of his new car with a tape measure. As Slim is speeding along the drag strip, Jim cannot apply this method to measure the length of the car, so he must proceed in an indirect manner. One such approach, as we indicated earlier, is this: Jim starts his stopwatch just when the front bumper of the car reaches him and stops it just as the rear bumper passes. By multiplying the elapsed time by the speed of the car, Jim can determine the car's length.
Using our newfound appreciation of the subtleties of time, we realize that from Slim's perspective he is stationary while Jim is moving, and hence Slim sees Jim's clock as running slow. As a result, Slim realizes that Jim's indirect measurement of the car's length will yield a shorter result than he measured in the showroom, since in Jim's calculation (length equals speed multiplied by elapsed time) Jim measures the elapsed time on a watch that is running slow. If it runs slow, the elapsed time he finds will be less and the result of his calculation will be a shorter length.
Thus Jim will perceive the length of Slim's car, when it is in motion, to be less than its length when measured at rest. This is an example of the general phenomenon that observers perceive a moving object as being shortened along the direction of its motion. For instance, the equations of special relativity show that if an object is moving at about 98 percent of light speed, then a stationary observer will view it as being 80 percent shorter than if it were at rest. This phenomenon is illustrated in Figure 2.4.4
Motion through Spacetime
The constancy of the speed of light has resulted in a replacement of the traditional view of space and time as rigid and objective structures with a new conception in which they depend intimately on the relative motion between observer and observed. We could end our discussion here, having realized that moving objects evolve in slow motion and are foreshortened. Special relativity, though, provides a more deeply unified perspective to encompass these phenomena.
To understand this perspective, let's imagine a rather impractical automobile that rapidly attains its cruising speed of 100 miles per hour and sticks to this speed, no more, no less, until it is shut off and rolls to a halt.
Let's also imagine that, due to his growing reputation as a skilled driver, Slim is asked to test-drive the vehicle on a long, straight, and wide track in the middle of a flat stretch of desert. As the distance between the start and finish lines is 10 miles, the car should cover this distance in one-tenth of an hour, or six minutes. Jim, who moonlights as an automobile engineer, inspects the data recorded from dozens of test-drives and is disturbed to see that although most were timed to be six minutes, the last few are a good deal longer: 6.5, 7, and even 7.5 minutes. At first he suspects a mechanical problem, since those times seem to indicate that the car was traveling slower than 100 miles per hour on the last three runs. Yet after examining the car extensively he convinces himself that it is in perfect condition. Unable to explain the anomalously long times, he consults Slim and asks him about the final few runs. Slim has a simple explanation. He tells Jim that, since the track runs from east to west, as it got later in the day, the sun was glaring into his view. During the last three runs it was so bad that he drove from one end of the track to the other at a slight angle. He draws a rough sketch of the path he took on the last three runs, and it is shown in Figure 2.5. The explanation for the three longer times is now perfectly clear: the path from start to finish is longer when traveling at an angle and therefore, at the same speed of 100 miles per hour, it will take more time to cover. Put another way, when traveling at an angle, part of the 100 miles per hour is expended on going from south to north, leaving a bit less to accomplish the trip from east to west. This implies that it will take a little longer to traverse the strip.
As stated, Slim's explanation is easy to understand; however, it is worth rephrasing it slightly for the conceptual leap we are about to take. The north-south and east-west directions are two independent spatial dimensions in which a car can move. (It can also move vertically, when traversing a mountain pass, for example, but we will not need that ability here.) Slim's explanation illustrates that even though the car was traveling at 100 miles per hour on each and every run, during the last few runs it shared this speed between the two dimensions and hence appeared to be going slower than 100 miles per hour in the east-west direction. During the previous runs, all 100 miles per hour were devoted to purely east-west motion; during the last three, part of this speed was used for north-south motion as well.
Einstein found that precisely this idea—the sharing of motion between different dimensions—underlies all of the remarkable physics of special relativity, so long as we realize that not only can spatial dimensions share an object's motion, but the time dimension can share this motion as well. In fact, in the majority of circumstances, most of an object's motion is through time, not space. Let's see what this means.
Motion through space is a concept we learn about early in life. Although we often don't think of things in such terms, we also learn that we, our friends, our belongings, and so forth all move through time, as well. When we look at a clock or a wristwatch, even while we idly sit and watch TV, the reading on the watch is constantly changing, constantly "moving forward in time." We and everything around us are aging, inevitably passing from one moment in time to the next. In fact, the mathematician Hermann Minkowski, and ultimately Einstein as well, advocated thinking about time as another dimension of the universe—the fourth dimension—in some ways quite similar to the three spatial dimensions in which we find ourselves immersed. Although it sounds abstract, the notion of time as a dimension is actually concrete. When we want to meet someone, we tell them where "in space" we will expect to see them—for instance, the 9th floor of the building on the corner of 53rd Street and 7th Avenue. There are three pieces of information here (9th floor, 53rd Street, 7th Avenue) reflecting a particular location in the three spatial dimensions of the universe. Equally important, however, is our specification of when we expect to meet them—for instance, at 3 P.M. This piece of information tells us where "in time" our meeting will take place. Events are therefore specified by four pieces of information: three in space and one in time. Such data, it is said, specifies the location of the event in space and in time, or in spacetime, for short. In this sense, time is another dimension.
Since this view proclaims that space and time are simply different examples of dimensions, can we speak of an object's speed through time in a manner resembling the concept of its speed through space? We can.
A big clue for how to do this comes from a central piece of information we have already encountered. When an object moves through space relative to us, its clock runs slow compared to ours. That is, the speed of its motion through time slows down. Here's the leap: Einstein proclaimed that all objects in the universe are always traveling through spacetime at one fixed speed—that of light. This is a strange idea; we are used to the notion that objects travel at speeds considerably less than that of light. We have repeatedly emphasized this as the reason relativistic effects are so unfamiliar in the everyday world. All of this is true. We are presently talking about an object's combined speed through all four dimensions—three space and one time—and it is the object's speed in this generalized sense that is equal to that of light. To understand this more fully and to reveal its importance, we note that like the impractical single-speed car discussed above, this one fixed speed can be shared between the different dimensions—different space and time dimensions, that is. If an object is sitting still (relative to us) and consequently does not move through space at all, then in analogy to the first runs of the car, all of the object's motion is used to travel through one dimension—in this
case, the time dimension. Moreover, all objects that are at rest relative to us and to each other move through time—they age—at exactly the same rate or speed. If an object does move through space, however, this means that some of the previous motion through time must be diverted. Like the car traveling at an angle, this sharing of motion implies that the object will travel more slowly through time than its stationary counterparts, since some of its motion is now being used to move through space. That is, its clock will tick more slowly if it moves through space. This is exactly what we found earlier. We now see that time slows down when an object moves relative to us because this diverts some of its motion through time into motion through space. The speed of an object through space is thus merely a reflection of how much of its motion through time is diverted.5
We also see that this framework immediately incorporates the fact that there is a limit to an object's spatial velocity: the maximum speed through space occurs if all of an object's motion through time is diverted to motion through space. This occurs when all of its previous light-speed motion through time is diverted to light-speed motion through space. But having used up all of its motion through time, this is the fastest speed through space that the object—any object—can possibly achieve. This is analogous to our car being test-driven directly in the north-south direction. just as the car will have no speed left for motion in the east-west dimension, something traveling at light speed through space will have no speed left for motion through time. Thus light does not get old; a photon that emerged from the big bang is the same age today as it was then. There is no passage of time at light speed.