by Brian Greene
Aside from a few speculations in Chapters 12 and 15, for our discussion here we approach strings in the manner proposed in the first answer—that is, we will take strings to be nature's most fundamental ingredient.
Unification through String Theory
Besides its inability to incorporate the gravitational force, the standard model has another shortcoming: There is no explanation for the details of its construction. Why did nature select the particular list of particles and forces outlined in previous chapters and recorded in Tables 1.1 and 1.2? Why do the 19 parameters that describe these ingredients quantitatively have the values that they do? You can't help feeling that their number and detailed properties seem so arbitrary. Is there a deeper understanding lurking behind these seemingly random ingredients, or were the detailed physical properties of the universe "chosen" by happenstance?
The standard model itself cannot possibly offer an explanation since it takes the list of particles and their properties as experimentally measured input. Just as the performance of the stock market cannot be used to determine the value of your portfolio without the input data of your initial investments, the standard model cannot be used to make any predictions without the input data of the fundamental particle properties.6 After experimental particle physicists fastidiously measure these data, theorists can then use the standard model to make testable predictions, such as what should happen when particular particles are slammed together in an accelerator. But the standard model can no more explain the fundamental particle properties of Tables 1.1 and 1.2 than the Dow Jones average today can explain your initial investment in stocks ten years ago.
In fact, had experiments revealed a somewhat different particle content in the microscopic world, possibly interacting with somewhat different forces, these changes could have been fairly easily incorporated in the standard model by providing the theory with different input parameters. The structure of the standard model, in this sense, is too flexible to be able to explain the properties of the elementary particles, as it could have accommodated a range of possibilities.
String theory is dramatically different. It is a unique and inflexible theoretical edifice. It requires no input beyond a single number, described below, that sets the benchmark scale for measurements. All properties of the microworld are within the realm of its explanatory power. To understand this, let's first think about more familiar strings, such as those on a violin. Each such string can undergo a huge variety (in fact, infinite in number) of different vibrational patterns known as resonances, such as those shown in Figure 6.1. These are the wave patterns whose peaks and troughs are evenly spaced and fit perfectly between the string's two fixed endpoints. Our ears sense these different resonant vibrational patterns as different musical notes. The strings in string theory have similar properties. There are resonant vibrational patterns that the string can support by virtue of their evenly spaced peaks and troughs exactly fitting along its spatial extent. Some examples are given in Figure 6.2. Here's the central fact: Just as the different vibrational patterns of a violin string give rise to different musical notes, the different vibrational patterns of a fundamental string give rise to different masses and force charges. As this is a crucial point, let's say it again. According to string theory, the properties of an elementary "particle"—its mass and its various force charges—are determined by the precise resonant pattern of vibration that its internal string executes.
It's easiest to understand this association for a particle's mass. The energy of a particular vibrational string pattern depends on its amplitude—the maximum displacement between peaks and troughs—and its wavelength—the separation between one peak and the next. The greater the amplitude and the shorter the wavelength, the greater the energy. This reflects what you would expect intuitively—more frantic vibrational patterns have more energy, while less frantic ones have less energy. We give a couple of examples in Figure 6.3. This is again familiar, as violin strings that are plucked more vigorously will vibrate more wildly, while those plucked more gingerly will vibrate more gently. Now, from special relativity we know that energy and mass are two sides of the same coin: Greater energy means greater mass, and vice versa. Thus, according to string theory, the mass of an elementary particle is determined by the energy of the vibrational pattern of its internal string. Heavier particles have internal strings that vibrate more energetically, while lighter particles have internal strings that vibrate less energetically.
Since the mass of a particle determines its gravitational properties, we see that there is a direct association between the pattern of string vibration and a particle's response to the gravitational force. Although the reasoning involved is somewhat more abstract, physicists have found that a similar alignment exists between other detailed aspects of a string's pattern of vibration and its properties vis à vis other forces. The electric charge, the weak charge, and the strong charge carried by a particular string, for instance, are determined by the precise way it vibrates. Moreover, exactly the same idea holds for the messenger particles themselves. Particles like photons, weak gauge bosons, and gluons are yet other resonant patterns of string vibration. And of particular importance, among the vibrational string patterns, one matches perfectly the properties of the graviton, ensuring that gravity is an integral part of string theory.7
So we see that, according to string theory, the observed properties of each elementary particle arise because its internal string undergoes a particular resonant vibrational pattern. This perspective differs sharply from that espoused by physicists before the discovery of string theory; in the earlier perspective the differences among the fundamental particles were explained by saying that, in effect, each particle species was "cut from a different fabric." Although each particle was viewed as elementary, the kind of "stuff" each embodied was thought to be different. Electron "stuff," for example, had negative electric charge, while neutrino "stuff' had no electric charge. String theory alters this picture radically by declaring that the "stuff" of all matter and all forces is the same. Each elementary particle is composed of a single string—that is, each particle is a single string—and all strings are absolutely identical. Differences between the particles arise because their respective strings undergo different resonant vibrational patterns. What appear to be different elementary particles are actually different "notes" on a fundamental string. The universe—being composed of an enormous number of these vibrating strings—is akin to a cosmic symphony.
This overview shows how string theory offers a truly wonderful unifying framework. Every particle of matter and every transmitter of force consists of a string whose pattern of vibration is its "fingerprint." Because every physical event, process, or occurrence in the universe is, at its most elementary level, describable in terms of forces acting between these elementary material constituents, string theory provides the promise of a single, all-inclusive, unified description of the physical universe: a theory of everything (T.O.E.).
The Music of String Theory
Even though string theory does away with the previous concept of structureless elementary particles, old language dies hard, especially when it provides an accurate description of reality down to the most minute of distance scales. Following the common practice of the field we shall therefore continue to refer to "elementary particles," yet we will always mean "what appear to be elementary particles but are actually tiny pieces of vibrating string." In the preceding section we proposed that the masses and the force charges of such elementary particles are the result of the way in which their respective strings are vibrating. This leads us to the following realization: If we can work out precisely the allowed resonant vibrational patterns of fundamental strings—the "notes," so to speak, that they can play—we should be able to explain the observed properties of the elementary particles. For the first time, therefore, string theory sets up a framework for explaining the properties of the particles observed in nature.
At this stage, then, we should "grab h
old" of a string and "pluck" it in all sorts of ways to determine the possible resonant patterns of vibration. If string theory is right, we should find that the possible patterns yield exactly the observed properties of the matter and force particles in Tables 1.1 and 1.2. Of course, a string is too small to carry out this experiment literally as described. Rather, by using mathematical descriptions we can theoretically pluck a string. In the mid-1980s, many string adherents believed that the mathematical analysis required for doing this was on the verge of being able to explain every detailed property of the universe on its most microscopic level. Some enthusiastic physicists declared that the T.O.E. had finally been discovered. More than a decade of hindsight has shown that the euphoria generated by this belief was premature. String theory has the makings of a T.O.E., but a number of hurdles remain, preventing us from deducing the spectrum of string vibrations with the precision necessary to compare with experimental results. At the present time, therefore, we do not know if the fundamental characteristics of our universe, summarized in Tables 1.1 and 1.2, can be explained by string theory. As we will discuss in Chapter 9, under certain assumptions that we will clearly state, string theory can give rise to a universe with properties that are in qualitative agreement with the known particle and force data, but extracting detailed numerical predictions from the theory is currently beyond our abilities. And so, although the framework of string theory, unlike that of the point-particle standard model, is capable of giving an explanation for why the particles and forces have the properties they do, we have not, as yet, been able to extract it. But remarkably, string theory is so rich and far-reaching that, even though we cannot yet determine its most detailed properties, we are able to gain insight into a wealth of the new physical phenomena that follow from the theory, as we will see in subsequent chapters.
In the following chapters we shall also discuss the status of the hurdles in some detail, but it is instructive first to understand them at a general level. Strings in the world around us come with a variety of tensions. The string laced through a pair of shoes, for example, is usually quite slack compared to the string stretched from one end of a violin to another. Both of these, in turn, are under far less tension than the steel strings of a piano. The one number that string theory requires in order to set its overall scale is the corresponding tension on its loops. How is this tension determined? Well, if we could pluck a fundamental string we would learn about its stiffness, and in this way we could measure its tension much as is done to measure the tension of more familiar everyday strings. But since fundamental strings are so tiny, this approach cannot be carried out and a more indirect method is called for. In 1974, when Scherk and Schwarz proposed that one particular pattern of string vibration was the graviton particle, they were able to exploit such an indirect approach and thereby predict the tension on the strings of string theory. Their calculations revealed that the strength of the force transmitted by the proposed graviton pattern of string vibration is inversely proportional to the string's tension. And since the graviton is supposed to transmit the gravitational force—a force that is intrinsically quite feeble—they found that this implies a colossal tension of a thousand billion billion billion billion (1039) tons, the so-called Planck tension. Fundamental strings are therefore extremely stiff compared with more familiar examples. This has three important consequences.
Three Consequences of Stiff Strings
First, whereas the ends of a violin or a piano string are pinned down, ensuring that they have a fixed length, no analogous constraining frame pins down the size of a fundamental string. Instead, the huge string tension causes the loops of string theory to contract to a minuscule size. Detailed calculation reveals that being under Planck tension translates into a typical string having Planck length—10-33 centimeters—as previously mentioned.8
Second, because of the enormous tension, the typical energy of a vibrating loop in string theory is extremely high. To understand this, we note that the greater the tension a string is under, the harder it is to get it to vibrate. For instance, it's far easier to pluck a violin string and set it vibrating than it is to pluck a piano string. Two strings, therefore, that are under different tension and are vibrating in precisely the same way will not have the same energy. The string with higher tension will have more energy than the string with lower tension, since more energy must be exerted to set it in motion.
This alerts us to the fact that the energy of a vibrating string is determined by two things: the precise manner in which it vibrates (more frantic patterns corresponding to higher energies) and the tension of the string (higher tension corresponding to higher energy). At first, this description might lead you to think that by taking on ever gentler vibrational patterns—patterns with ever smaller amplitudes and fewer peaks and troughs—a string can embody less and less energy. But as we found in Chapter 4 in a different context, quantum mechanics tells us that this reasoning is not right. Like all vibrations or wavelike disturbances, quantum mechanics implies that they can exist only in discrete units. Roughly speaking, just as the money carried by a comrade in the warehouse is a whole number multiple of the monetary denomination with which he or she is entrusted, the energy embodied in a string vibrational pattern is a whole number multiple of a minimal energy denomination. In particular, this minimal energy denomination is proportional to the tension of the string (and it is also proportional to the number of peaks and troughs in the particular vibrational pattern), while the whole number multiple is determined by the amplitude of the vibrational pattern.
The key point for the present discussion is this: Since the minimal energy denominations are proportional to the string's tension, and since this tension is enormous, the fundamental minimal energies are, on the usual scales of elementary particle physics, similarly huge. They are multiples of what is known as the Planck energy. To get a sense of scale, if we translate the Planck energy into a mass using Einstein's famous conversion formula E = mc2, they correspond to masses that are on the order of ten billion billion (1019) times that of a proton. This gargantuan mass—by elementary particle standards—is known as the Planck mass; it's about equal to the mass of a grain of dust or a collection of a million average bacteria. And so, the typical mass-equivalent of a vibrating loop in string theory is generally some whole number (1, 2, 3, ...) times the Planck mass. Physicists often express this by saying that the "natural" or "typical" energy scale (and hence mass scale) of string theory is the Planck scale.
This raises a crucial question directly related to the goal of reproducing the particle properties in Tables 1.1 and 1.2: If the "natural" energy scale of string theory is some ten billion billion times that of a proton, how can it possibly account for the far-lighter particles—electrons, quarks, photons, and so on—making up the world around us?
The answer, once again, comes from quantum mechanics. The uncertainty principle ensures that nothing is ever perfectly at rest. All objects undergo quantum jitter, for if they didn't we would know where they were and how fast they were moving with complete precision, in violation of Heisenberg's dictum. This holds true for the loops in string theory as well; no matter how placid a string appears it will always experience some amount of quantum vibration. The remarkable thing, as originally worked out in the 1970s, is that there can be energy cancellations between these quantum jitters and the more intuitive kind of string vibrations discussed above and illustrated in Figures 6.2 and 6.3. In effect, through the weirdness of quantum mechanics, the energy associated with the quantum jitters of a string is negative, and this reduces the overall energy content of a vibrating string by an amount that is roughly equal to Planck energy. This means that the lowest-energy vibrational string patterns, whose energies we would naively expect to be about equal to the Planck energy (i.e., 1 times the Planck energy), are largely canceled, thereby yielding relatively low net-energy vibrations—energies whose corresponding mass-equivalents are in the neighborhood of the matter and force particle masses shown in Tables
1.1 and 1.2. It is these lowest energy vibrational patterns, therefore, that should provide contact between the theoretical description of strings and the experimentally accessible world of particle physics. As an important example, Scherk and Schwarz found that for the vibrational pattern whose properties make it a candidate for the graviton messenger particle, the energy cancellations are perfect, resulting in a zero-mass gravitational-force particle. This is precisely what is expected for the graviton; the gravitational force is transmitted at light speed and only massless particles travel at this maximal velocity. But low-energy vibrational combinations are very much the exception rather than the rule. The more typical vibrating fundamental string corresponds to a particle whose mass is billions upon billions times greater than that of the proton.
This tells us that the comparatively light fundamental particles of Tables 1.1 and 1.2 should arise, in a sense, from the fine mist above the roaring ocean of energetic strings. Even a particle as heavy as the top quark, with a mass about 189 times that of the proton, can arise from a vibrating string only if the string's enormous characteristic Planck-scale energy is canceled by the jitters of quantum uncertainty to better than one part in a hundred million billion. It's as if you were playing The Price Is Right and Bob Barker gives you ten billion billion dollars and challenges you to purchase products that will cost—cancel, so to speak—all but 189 of the dollars, not a dollar more or less. Coming up with such an enormous yet precise expenditure, without being privy to the exact prices of the individual items, would severely tax the acumen of even the world's most expert shoppers. In string theory, where the currency is energy as opposed to money, approximate calculations have conclusively shown that analogous energy cancellations certainly can occur, but for reasons that will become increasingly clear in subsequent chapters, verifying the cancellations to such a high level of precision is generally beyond our theoretical ken at present. Even so, as indicated before, we shall see that many other properties of string theory that are less sensitive to these finest of details can be extracted and understood with confidence.