Fighter Wing: A Guided Tour of an Air Force Combat Wing tcml-3

Home > Literature > Fighter Wing: A Guided Tour of an Air Force Combat Wing tcml-3 > Page 12
Fighter Wing: A Guided Tour of an Air Force Combat Wing tcml-3 Page 12

by Tom Clancy


  All these systems and weaponry have made the Eagle the most powerful air superiority fighter in the world for over two decades now. This has translated to a modest degree of success in the export market, despite the relatively high cost of the Eagle compared to the F-16 Fighting Falcon, the Mirage F-1 and -2000, and the MiG-29. Several generations of Russian, British, and French fighters have tried to get the better of the Eagle, but regular upgrades and the superb training of the USAF pilots have kept the F-15 at the top of the worldwide fighter hierachy. Currently, there are more than 1,300 F-15s of all models in service with the U.S. Air Force, the Israeli Air Force (F-15A/B/I models), the Japanese Air Self-Defense Force (F-15J), and the Royal Saudi Air Force (F-15A/B/S models). The Japanese F-15J is built by Mitsubishi on license from McDonnell Douglas.

  The ultimate test of any military aircraft is combat, and the Eagle has an undefeated record. The Israelis scored the Eagle's first kill, a Syrian MiG-21 in June of 1979. Later on, in February 1981, they provided the ultimate proof of the Eagle's superiority by downing a Syrian MiG-25 Foxbat, the very aircraft it had been designed to defeat. Israeli F-15s also escorted the force of F-16s that destroyed an unfinished Iraqi nuclear reactor outside Baghdad in 1981. The Saudis also have scored with their force of Eagles, with at least one kill of an Iranian Phantom over the Persian Gulf in 1988, and two kills by one pilot of a pair of Iraqi Mirage F-1Qs armed with AM-39 Exocet anti-shipping missiles during Desert Storm. In fact, Eagles shot down at least thirty-five of the forty-one aircraft that Iraq lost in air-to-air combat during the 1991 conflict. The record book currently credits the F-15 with a career total of 96.5 confirmed air-to-air kills for no losses.

  With the coming of the F-15's designated replacement, the Lockheed F-22, further production of the Eagle for the USAF and a few foreign governments will be limited to the Strike version. The remaining USAF — C and — E model aircraft will all be fitted with GPS receivers, as well as the follow-on version of the JTIDS data link terminal. There is also a radar upgrade program, designed to replace some of the "black box" components of the APG-63/70 system with newer units from the APG-73 radar used on the F/ A-18 Hornet fighters now being delivered to the U.S. Navy. This upgrade will allow for faster processing of information, as well as a larger memory module. It is also likely that before it goes out of service, the new model of the venerable Sidewinder AAM, the AIM-9X with its helmet-mounted sighting system, will be integrated into the Eagle. Whatever happens to the Eagle fleet, the taxpayers of the United States can be pleased with the value that they received for their investment in the Eagle, which held the line in the air for the last years of the Cold War and the beginning of the new world order.

  MCDONNELL DOUGLAS F-15E STRIKE EAGLE

  I had never flown an eighty-one-thousand-pound jet before, and we were surprised when we started taxiing. We felt a thump, thump, thump underneath us, and we were concerned until we realized that all that weight standing on the tires had molded a temporary flat spot on them.

  — F-15E PILOT, DESERT STORM, JANUARY 17, 1991

  The F-15E Strike Eagle is an almost perfect balance of structure, power plant, sensors, weapons, and avionics, controlled by the finest cockpit design in the world today. Now you might wonder why I'm describing it separately from the air-to-air version of the Eagle. The truth is that while the two birds share a common heritage, they really are different aircraft, both inside and out. In fact, the crews that fly this powerful beast say there are two kinds of USAF crews: those that fly the Strike Eagle, and those who wish they did. Given what I've learned about this machine, they may be right.

  It is surprising that an aircraft originally designed as a pure air superiority machine should give rise to one of the greatest fighter-bombers in aviation history. Nevertheless, by the early 1980s, with the fleet of F-111 fighter bombers aging rapidly, and the F-117As just coming into service, there was a severe shortage of all-weather strike aircraft in USAF service. Thus, the USAF leadership began to kick around the idea of an interim strike aircraft, which could bridge the gap between the older F-111 and the new stealth types that were being planned.

  The F-15E was not a plane the Air Force requested directly per se; it began as a private venture funded by McDonnell Douglas. This is because the contracting rules of the U.S. Department of Defense (DoD) do not allow the services to "ask" a contractor directly to make them something. They can, however, "suggest" that a company put together an "unsolicited proposal" to offer certain goods and services. Such dialogues are common, and were apparently conducted by General Wilber Creech, USAF, then commander of the Tactical Air Command, and several aircraft companies concerning strike variants of existing fighter designs. Thus, General Creech might well be considered the USAF "father" of the Strike Eagle. The effort began when a production F-15B (originally a two-seat trainer version) was converted for ground attack by adding extra underwing pylons and bomb racks on CFTs. Demonstrations of the prototype at Edwards and Eglin AFBs in 1982 and 1983 were sufficiently impressive that the Air Force decided to hold a competition between the F-15 and an improved version of the General Dynamics (now Lockheed) F-16 with a cranked delta wing, the F-16XL. The McDonnell Douglas entry won the competition, and in 1984 they were awarded a contract to begin full-scale development, with an original goal of 392 production aircraft. But budget cuts at the end of the Cold War chopped this number down to two hundred by 1994, plus a few replacements for aircraft lost in Desert Storm and training mishaps.

  A McDonnell Douglas F-15E Strike Eagle of the 366th Wing's 391st Fighter Squadron flies over the Nevada desert during Green Flag 94-3. It is armed with the training versions of Sidewinder and AMRAAM air-to-air and Maverick air-to-ground missiles.

  Craig E. Kaston

  The first flight of the Strike Eagle was on December 11th, 1986, with deliveries to the Air Force beginning on December 29th, 1988. The 4th TFW, with three squadrons, reached an initial operational capability (IOC — first squadron service) in October 1989 at Seymour Johnson AFB, North Carolina.

  A cutaway drawing of the forward fuselage of the McDonnell Douglas F-15E Strike Eagle.

  Jack Ryan Enterprises, Ltd., by Laura Alpher

  That change was more than just cosmetic. Although the F-15E is externally very similar to the F-15D (the two-seat trainer model of the F-15C), about 60 % of the F-15's structure was redesigned to accommodate its new role as a strike aircraft. These changes were designed to strengthen the airframe, extending the certified fatigue life to sixteen thousand hours, and allowing sustained 9-G maneuvers, like its smaller partner, the F-16. The extra strength is important, because the huge fixed-geometry wing of the F-15 can make for a rough ride at low altitude for both the airframe and the crew, even when nobody is trying to kill you. Also, since low-altitude, high-speed flight can be a dangerous thing, the F-15E's windshield is specially strengthened against bird-strikes, which are more common than you might think. The basic F-15 is an enormously tough airplane — after a midair collision, one F-15 pilot safely landed his craft with only 14 in./35 cm. of wing remaining on one side — and the modifications to the — E model have only made it tougher. Maximum takeoff weight was increased from 68,000 lb./30,845 kg. to an astounding 81,000 lb./36,741 kg.! Of this total, up to 24,500 lb./11,100 kg. can be ordnance, in almost any mix of air-to-air and air-to-ground weapons imaginable.

  The two-man cockpit of this Mc-Donnell Douglas F-15E Strike Eagle is shown to advantage, with the wide-field-of-view Heads-Up Display (HUD) at the bottom, in front of the pilot.

  Craig E. Kaston

  The greatest strength of the Strike Eagle is the two-man cockpit, which allows for the increased workloads of low-level, day and night strike missions. Historically, two-seat fighters have usually gained the advantage in combat against single-seat types, because the situational awareness benefit of an extra set of eyes and brains is greater than the weight penalty of the extra ejection seat. The benefit is even greater in ground attack missions, because the backseater can concen
trate on precise delivery of weapons and managing the defensive-countermeasures systems (jamming, chaff, and flares), while the pilot concentrates on flying the plane. Though Weapons Systems Officers (WSOs) are not trained as pilots, they do tend to become skilled at flying and "staying" the pilot; and both crew positions have a full set of flight controls.

  A cutaway drawing of the Lockheed Martin AAQ-13 LANTIRN navigation pod.

  Jack Ryan Enterprises, Ltd., by Laura Alpher

  The division of labor in the Strike Eagle between the pilot (in the front seat) and WSO (or "wizzo," in the backseat) is nearly perfect, thanks to another excellent design effort by Eugene Adam and his team at McDonnell Douglas. In the front seat, the pilot has a wide field-of-view HUD and three Multi-Function Displays (MFDs), two monochrome/green and one full-color, in addition to the normal controls you would encounter in an F-15C. Each MFD functions like a computer monitor that can show data clearly even in bright daylight, and has an array of selection buttons mounted on all four sides of the bezel. The HOTAS controls have been upgraded to support the extra capabilities of the — E model's APG-70 radar, as well as the Low Altitude Navigation and Targeting Infrared for Night (LANTIRN) system pods (which we will look at later). To the right of the HUD is the display for the Improved Data Modem (IDM), a sort of low-speed data link which is tied to the onboard Have Quick II radios and the weapons delivery system. It is designed to be part of the joint-service Automatic Target Hand-Off System (ATHS), which allows the F-15E to automatically send and receive targeting coordinates to and from a number of other U.S. Army, Marine, and Air Force systems, including the F-16C, the OH-58D Kiowa Warrior, the AV-8V Harrier II, the AH-64A Apache, and the Army's TACFIRE artillery control system. In lieu of a JTIDS terminal (which is planned for installation later), it is a capable little device for getting targeting information from a variety of sources. In the rear cockpit, delivery of air-to-ground ordnance is the WSO's main job, and the best tool for this is the same Hughes APG-70 radar that is on the — C model Eagle, though it has a number of added features unique to the Strike Eagle. The radar data, as well as data from the onboard LANTIRN pods, are displayed on four MFDs — two color and two monochrome/green — in the rear cockpit. An onboard videotape recorder serves as the "gun camera," recording whatever appears in the HUD, or on any of the selected MFDs.

  Along with the radar, the WSO also controls the same ALQ-135 internal jammer package, ALE-45/47 decoy launchers, ALR-56M RWR, APX-101 IFF system, as on the — C model Eagle, along with the other avionics. Provisions are currently being made in the F-15Es flight software and on the data bus for a GPS receiver and the JTIDS secure data link, which will be added later in the 1990s. Another planned upgrade may be a satellite communications system, which would allow ground-based commanders to stay in contact with aircraft on the most distant missions.

  The pilot's instrument panel in the McDonnell Douglas F-15E Strike Eagle. The three computer-style Multi-Function Displays are clearly shown, as well as the Data Entry Panel (top center).

  McDonnell Douglas Aeronautical Systems

  The engine bays of the F-15E were designed with a common interface to accommodate either the standard Pratt & Whitney F100-PW-220 turbofan or the more powerful F100-PW-229, which can deliver up to 29,000lb./ 13,181 kg. of thrust. All this thrust means that in "clean" configuration at high altitude, the F-15E's maximum speed is Mach 2.5. At low altitude, with a maximum bomb load, the weapons impose a practical limit around 490 knots/564 mph./908 kph. The maximum unrefueled combat radius of the F-15E depends very much on the flight profile, but a typical figure is about 790 nm./1,445 km. using 3,475 gallons/13,100 liters of internal fuel (including that in the CFT packs) and three 610 gallon/2,300 liter external tanks. For truly long-range missions, tanker support is essential to the Strike Eagle, though the F-15E needs less of this than other strike aircraft.

  A heads-on view of a McDonnell Douglas F-15E Strike Eagle from the 366th Wing's 391st Fighter Squadron. The two Lockheed Martin Low Altitude Navigation and Targeting Infrared for Night (LANTIRN) system pods are mounted on pylons under the engine inlets, with a pair of Mk 84 general-purpose bombs mounted on hard points under the two Conformal Fuel Tanks (CFTs). There is also a Sidewinder air-to-missile training round on the port wing weapons pylon.

  John D. Gresham

  LOCKHEED MARTIN AAQ-13/14 LANTIRN SYSTEM

  I commented on how close our wing tip was to the trees. [The pilot] responded, "It's worse in the daytime. You can see every chipmunk… "

  — AVIATION WEEK PILOT REPORT, F16/LANTIRN APRIL 25, 1988

  The Lockheed Martin (formerly Martin Marietta) Low Altitude Navigation and Targeting Infrared for Night (LANTIRN) system consists of a pair of cylindrical pods that fit on stubby pylons under the forward fuselage of the F-15E and selected F-16s. The AAQ-13 navigation pod weighs 430lb./195 kg.; the AAQ-14 targeting pod weighs 540 lb./245 kg.; and the software that integrates them with the aircraft flight controls and weapons weighs nothing at all. LANTIRN combines a host of electro-optical and computer technologies to do something quite simple: turn night into day for the crew of a strike fighter. Under a $2.9 billion contract awarded in 1985, Martin Marietta delivered 561 navigation pods and 506 targeting pods, plus support equipment, to the U.S. Air Force. At one time, there were plans to integrate the system on the A-10, and possibly the B-1B, but this is now unlikely, due to budget constraints. The complete LANTIRN system adds about $4 million to the cost of the aircraft; not a high price for turning night into day.

  The AAQ-13 navigation pod includes a Texas Instruments Ku-band terrain-following radar (TFR) and forward-looking infrared (FLIR) sensor that turns heat emitted by objects into a visible image. The pod generates video imagery and symbology for the pilot's Heads-Up Display (HUD) for a field-of-view of 21deg by 28deg. The image is grainy, but the sense of depth is good enough to fly by in total darkness or the smoke of a battlefield. Rain, fog, or snow, however, degrade the performance of the system, since infrared energy is attenuated by aerosols or water vapor. The TFR in the AAQ-13 pod can be linked directly to the aircraft's autopilot to automatically maintain a preset altitude down to 100 feet/30.5 meters while flying over virtually any kind of terrain. For manual operations it projects a "fly-to box" on the HUD, so that all the pilot needs to do is keep the plane's centerline aimed at the "fly-to box" to safely clear obstacles. It is even possible to land the plane safely at night without runway lights, simply by viewing the different infrared signatures of the painted strips on the runway surface! By flicking a HOTAS switch on the control stick, the pilot can "snap look" left, right, up, or down, either in level flight or in a banked turn. Another switch selects "black hot" or "white hot," allowing the pilot to choose whichever mode provides the best image contrast.

  The AAQ-14 targeting pod includes another FLIR in a two-axis turret, with a selectable wide or narrow field-of-view, and a laser designator/rangefinder. The targeting pod FLIR displays its imagery on a small video screen in the cockpit; it can be aimed independently of the navigation pod FLIR and used like a telescope to identify terrain features or targets at fairly long ranges. The targeting pod's laser designator can then "illuminate" targets for laser-guided bombs like the Paveway III series (described later). It can also lock on to moving targets and track them automatically, as well as designate ground targets for AGM-65 Maverick missiles (which use either TV or imaging infrared guidance). In fact, it is possible to designate targets for multiple Maverick shots in a single pass. The laser can also be used to determine the exact range to a landmark in order to update the aircraft's inertial navigation system; this is critical for the accurate delivery of all kinds of ordnance (guided and unguided) without visual references. For training, the targeting pod laser has a special low-energy "eye-safe" mode, which suggests that the full power of the AAQ-14's laser could potentially blind ground troops. Although LANTIRN targeting was designed for air-to-ground weapons delivery, there is nothing to prevent the crew from using the capabiliti
es of the system in air-to-air combat. Modern Russian aircraft like the MiG-29 and Su-27 have an Infrared Search and Track System (IRST) mounted in a small hemispherical fairing forward of the cockpit that allows for detection and targeting of enemy aircraft without radar emissions that might alert the potential victim. It is likely that AAQ-14 pod has a similar potential, although it is not certain how well this is supported by the current software.

  A cutaway drawing of the Lockheed Martin AAQ-14 LANTIRN Targeting Pod.

  Jack Ryan Enterprises, Ltd., by Laura Alpher

  Despite delays in the LANTIRN program, one wing of seventy-two F-16s (out of some 249 deployed) was equipped for LANTIRN during Desert Storm, with the AAQ-13 navigation pod. Forty-eight F-15Es deployed to the Persian Gulf; all of these had the navigation pod, and about a dozen received AAQ-14 targeting pods, rushed into service directly from the factory. LANTIRN made it possible to fly safely, at low level, at night, across featureless desert terrain, without the need for high-powered navigation aids, such as the APG-70 ground-mapping radar, which might have alerted enemy sensors. Many of the LANTIRN combat sorties flown by the F-15Es and F-16Cs were devoted to the "Great SCUD Hunt" in the western desert of Iraq.

  Flying the F-15E Strike Eagle

  The first time they go to an airshow featuring the USAF Thunderbirds, the USN Blue Angels, or perhaps the RAF Red Arrows, many boys and girls dream of flying the kind of high-performance aircraft they see there. When we went out to visit the 366th Wing at Mountain Home AFB, there was an invitation waiting for just such a ride, in the aircraft of our choice — F-15 Eagle, F-15E Strike Eagle, or F-16 Fighting Falcon. Now, it's no secret that I'm not much of a fan of powered flight, much less sitting on top of an explosive ejection seat ready to launch me from the airplane! I've turned down a number of such offers over the years, the most tempting of these being an F-16 ride from my old friend Brigadier General "Tony" Tolin, who once commanded the F-117 Wing out in Nevada. Luckily, my researcher John Gresham has no such qualms, and all but left tread marks on the ground when he was informed of the opportunity.

 

‹ Prev