Death By Black Hole & Other Cosmic Quandaries

Home > Science > Death By Black Hole & Other Cosmic Quandaries > Page 33
Death By Black Hole & Other Cosmic Quandaries Page 33

by Neil DeGrasse Tyson


  TOPPING THE LIST of religious predictions are the perennial claims about when the world will end, none of which have yet proved true. A harmless enough exercise. But other claims and predictions have actually stalled or reversed the progress of science. We find a leading example in the trial of Galileo (which gets my vote for the trial of the millennium) where he showed the universe to be fundamentally different from the dominant views of the Catholic Church. In all fairness to the Inquisition, however, an Earth-centered universe made lots of sense observationally. With a full complement of epicycles to explain the peculiar motions of the planets against the background stars, the time-honored, Earth-centered model had conflicted with no known observations. This remained true long after Copernicus introduced his Sun-centered model of the universe a century earlier. The Earth-centric model was also aligned with the teachings of the Catholic Church and prevailing interpretations of the Bible, wherein Earth is unambiguously created before the Sun and the Moon as described in the first several verses of Genesis. If you were created first, then you must be in the center of all motion. Where else could you be? Furthermore, the Sun and Moon themselves were also presumed to be smooth orbs. Why would a perfect, omniscient deity create anything else?

  All this changed, of course, with the invention of the telescope and Galileo’s observations of the heavens. The new optical device revealed aspects of the cosmos that strongly conflicted with people’s conceptions of an Earth-centered, blemish-free, divine universe: The Moon’s surface was bumpy and rocky; the Sun’s surface had spots that moved across its surface; Jupiter had moons of its own that orbited Jupiter and not Earth; and Venus went through phases, just like the Moon. For his radical discoveries, which shook Christendom—and for being a pompous jerk about it—Galileo was put on trial, found guilty of heresy, and sentenced to house arrest. This was mild punishment when one considers what happened to the monk Giordano Bruno. A few decades earlier Bruno had been found guilty of heresy, and then burned at the stake, for suggesting that Earth may not be the only place in the universe that harbors life.

  I do not mean to imply that competent scientists, soundly following the scientific method, have not also been famously wrong. They have. Most scientific claims made on the frontier will ultimately be disproved, due primarily to bad or incomplete data, and occasionally to blunder. But the scientific method, which allows for expeditions down intellectual dead ends, also promotes ideas, models, and predictive theories that can be spectacularly correct. No other enterprise in the history of human thought has been as successful at decoding the ways and means of the universe.

  Science is occasionally accused of being a closed-minded or stubborn enterprise. Often people make such accusations when they see scientists swiftly discount astrology, the paranormal, Sasquatch sightings, and other areas of human interest that routinely fail double-blind tests or that possess a dearth of reliable evidence. But don’t be offended. Scientists apply this same level of skepticism to ordinary claims in the professional research journals. The standards are identical. Look what happened when the Utah chemists B. Stanley Pons and Martin Fleischmann claimed in a press conference to have created “cold” nuclear fusion on their laboratory table. Scientists acted swiftly and skeptically. Within days of the announcement it was clear that no one could replicate the cold fusion results that Pons and Fleischmann claimed. Their work was summarily dismissed. Similar plot lines unfold almost daily (minus the press conferences) for nearly every new scientific claim. The ones you hear about tend to be only those that could affect the economy.

  WITH SCIENTISTS EXHIBITING such strong levels of skepticism, some people may be surprised to learn that scientists heap their largest rewards and praises upon those who do, in fact, discover flaws in established paradigms. These same rewards also go to those who create new ways to understand the universe. Nearly all famous scientists, pick your favorite one, have been so praised in their own lifetimes. This path to success in one’s professional career is antithetical to almost every other human establishment—especially to religion.

  None of this is to say that the world does not contain religious scientists. In a recent survey of religious beliefs among math and science professionals (Larson and Witham 1998), 65 percent of the mathematicians (the highest rate) declared themselves to be religious, as did 22 percent of the physicists and astronomers (the lowest rate). The national average among all scientists was around 40 percent and has remained largely unchanged over the past century. For reference, about 90 percent of the American public claims to be religious (among the highest in Western society), so either nonreligious people are drawn to science or studying science makes you less religious.

  But what of those scientists who are religious? Successful researchers do not get their science from their religious beliefs. On the other hand, the methods of science currently have little or nothing to contribute to ethics, inspiration, morals, beauty, love, hate, or aesthetics. These are vital elements of civilized life and are central to the concerns of nearly every religion. What it all means is that for many scientists there is no conflict of interest.

  As we will soon see in detail, when scientists do talk about God, they typically invoke him at the boundaries of knowledge where we should be most humble and where our sense of wonder is greatest.

  Can one grow tired of wonderment?

  In the thirteenth century, Alfonso the Wise (Alfonso X), the king of Spain, who also happened to be an accomplished academician, was frustrated by the complexity of Ptolemy’s epicycles accounting for the geocentric universe. Being less humble than others on the frontier, Alfonso once mused, “Had I been around at the creation, I would have given some useful hints for the better ordering of the universe” (Carlyle 2004, Book II, Chapter VII).

  In full agreement with King Alfonso’s frustrations with the universe, Albert Einstein noted in a letter to a colleague, “If God created the world, his primary worry was certainly not to make its understanding easy for us” (1954). When Einstein could not figure out how or why a deterministic universe could require the probabilistic formalisms of quantum mechanics, he mused, “It is hard to sneak a look at God’s cards. But that He would choose to play dice with the world…is something that I cannot believe for a single moment” (Frank 2002, p. 208). When an experimental result was shown to Einstein that, if correct, would have disproved his new theory of gravity Einstein commented, “The Lord is subtle, but malicious He is not” (Frank 2002, p. 285). The Danish physicist Niels Bohr, a contemporary of Einstein, heard one too many of Einstein’s God-remarks and declared that Einstein should stop telling God what to do! (Gleick 1999)

  Today, you hear the occasional astrophysicist (maybe one in a hundred) publicly invoke God when asked where did all our laws of physics come from or what was around before the big bang. As we have come to anticipate, these questions comprise the modern frontier of cosmic discovery and, at the moment, they transcend the answers our available data and theories can supply. Some promising ideas, such as inflationary cosmology and string theory, already exist. These could ultimately provide the answers to those questions, further pushing back our boundary of awe.

  My personal views are entirely pragmatic and partly resonate with those of Galileo who, during his trial, is credited with saying, “The Bible tells you how to go to heaven, not how the heavens go” (Drake 1957, p. 186). Galileo further noted, in a 1615 letter to the Grand Duchess of Tuscany, “In my mind God wrote two books. The first book is the Bible, where humans can find the answers to their questions on values and morals. The second book of God is the book of nature, which allows humans to use observation and experiment to answer our own questions about the universe” (Drake 1957, p. 173).

  I simply go with what works. And what works is the healthy skepticism embodied in scientific method. Believe me, if the Bible had ever been shown to be a rich source of scientific answers and understanding, we would be mining it daily for cosmic discovery. Yet my vocabulary of scientific inspiration strongly ove
rlaps with that of religious enthusiasts. I, like others, am humbled in the presence of the objects and phenomena of our universe. And I go misty with admiration for its splendor. But I do so knowing and accepting that if I propose a God who graces our valley of unknowns, the day may come, empowered by the advance of science, when no more valleys remain.

  FORTY-TWO

  THE PERIMETER OF IGNORANCE

  Writing in centuries past, many scientists felt compelled to wax poetic about cosmic mysteries and God’s handiwork. Perhaps one should not be surprised at this: most scientists back then, as well as many scientists today, identify themselves as spiritually devout.

  But a careful reading of older texts, particularly those concerned with the universe itself, shows that the authors invoke divinity only when they reach the boundaries of their understanding. They appeal to a higher power only when staring into the ocean of their own ignorance. They call on God only from the lonely and precarious edge of incomprehension. Where they feel certain about their explanations, however, God gets hardly a mention.

  Let’s start at the top. Isaac Newton was one of the greatest intellects the world has ever seen. His laws of motion and his universal law of gravitation, conceived in the mid-seventeenth century, account for cosmic phenomena that had eluded philosophers for millennia. Through those laws, one could understand the gravitational attraction of bodies in a system, and thus come to understand orbits.

  Newton’s law of gravity enables you to calculate the force of attraction between any two objects. If you introduce a third object, then each one attracts the other two, and the orbits they trace become much harder to compute. Add another object, and another, and another, and soon you have the planets in our solar system. Earth and the Sun pull on each other, but Jupiter also pulls on Earth, Saturn pulls on Earth, Mars pulls on Earth, Jupiter pulls on Saturn, Saturn pulls on Mars, and on and on.

  Newton feared that all this pulling would render the orbits in the solar system unstable. His equations indicated that the planets should long ago have either fallen into the Sun or flown the coop—leaving the Sun, in either case, devoid of planets. Yet the solar system, as well as the larger cosmos, appeared to be the very model of order and durability. So Newton, in his greatest work, the Principia, concludes that God must occasionally step in and make things right:

  The six primary Planets are revolv’d about the Sun, in circles concentric with the Sun, and with motions directed towards the same parts, and almost in the same plane…. But it is not to be conceived that mere mechanical causes could give birth to so many regular motions…. This most beautiful System of the Sun, Planets, and Comets, could only proceed from the counsel and dominion of an intelligent and powerful Being. (1992, p. 544)

  In the Principia, Newton distinguishes between hypotheses and experimental philosophy, and declares, “Hypotheses, whether metaphysical or physical, whether of occult qualities or mechanical, have no place in experimental philosophy” (p. 547). What he wants is data, “inferr’d from the phænomena.” But in the absence of data, at the border between what he could explain and what he could only honor—the causes he could identify and those he could not—Newton rapturously invokes God:

  Eternal and Infinite, Omnipotent and Omniscient;…he governs all things, and knows all things that are or can be done…. We know him only by his most wise and excellent contrivances of things, and final causes; we admire him for his perfections; but we reverence and adore him on account of his dominion. (p. 545)

  A century later, the French astronomer and mathematician Pierre-Simon Laplace confronted Newton’s dilemma of unstable orbits head-on. Rather than view the mysterious stability of the solar system as the unknowable work of God, Laplace declared it a scientific challenge. In his multipart masterpiece, Traité de mécanique céleste, the first volume of which appeared in 1799, Laplace demonstrates that the solar system is stable over periods of time longer than Newton could predict. To do so, Laplace pioneered a new kind of mathematics called perturbation theory, which enabled him to examine the cumulative effects of many small forces. According to an oft-repeated but probably embellished account, when Laplace gave a copy of Traité de mécanique céleste to his physics-literate friend Napoleon Bonaparte, Napoleon asked him what role God played in the construction and regulation of the heavens. “Sire,” Laplace replied, “I had no need of that hypothesis” (DeMorgan 1872).

  LAPLACE NOTWITHSTANDING, plenty of scientists besides Newton have called on God—or the gods—wherever their comprehension fades to ignorance. Consider the second-century A.D. Alexandrian astronomer Ptolemy. Armed with a description, but no real understanding, of what the planets were doing up there, he could not contain his religious fervor and scribbled this note in the margin of his Almagest:

  I know that I am mortal by nature, and ephemeral; but when I trace, at my pleasure, the windings to and fro of the heavenly bodies, I no longer touch Earth with my feet: I stand in the presence of Zeus himself and take my fill of ambrosia.

  Or consider the seventeenth-century Dutch astronomer Christiaan Huygens, whose achievements include constructing the first working pendulum clock and discovering the rings of Saturn. In his charming book The Celestial Worlds Discover’d, posthumously published in 1698, most of the opening chapter celebrates all that was then known of planetary orbits, shapes, and sizes, as well as the planets’ relative brightness and presumed rockiness. The book even includes foldout charts illustrating the structure of the solar system. God is absent from this discussion—even though a mere century earlier, before Newton’s achievements, planetary orbits were supreme mysteries.

  Celestial Worlds also brims with speculations about life in the solar system, and that’s where Huygens raises questions to which he has no answer. That’s where he mentions the biological conundrums of the day, such as the origin of life’s complexity. And sure enough, because seventeenth-century physics was more advanced than seventeenth-century biology, Huygens invokes the hand of God only when he talks about biology:

  I suppose no body will deny but that there’s somewhat more of Contrivance, somewhat more of Miracle in the production and growth of Plants and Animals than in lifeless heaps of inanimate Bodies…. For the finger of God, and the Wisdom of Divine Providence, is in them much more clearly manifested than in the other. (p. 20)

  Today secular philosophers call that kind of divine invocation “God of the gaps”—which comes in handy, because there has never been a shortage of gaps in people’s knowledge.

  AS REVERENT AS Newton, Huygens, and other great scientists of earlier centuries may have been, they were also empiricists. They did not retreat from the conclusions their evidence forced them to draw, and when their discoveries conflicted with prevailing articles of faith, they upheld the discoveries. That doesn’t mean it was easy: sometimes they met fierce opposition, as did Galileo, who had to defend his telescopic evidence against formidable objections drawn from both scripture and “common” sense.

  Galileo clearly distinguished the role of religion from the role of science. To him, religion was the service of God and the salvation of souls, whereas science was the source of exact observations and demonstrated truths. In his 1615 letter to the Grand Duchess Christina of Tuscany he leaves no doubt about where he stood on the literal word of the Holy Writ:

  In expounding the Bible if one were always to confine oneself to the unadorned grammatical meaning, one might fall into error….

  Nothing physical which…demonstrations prove to us, ought to be called in question (much less condemned) upon the testimony of biblical passages which may have some different meaning beneath their words….

  I do not feel obliged to believe that the same God who has endowed us with senses, reason and intellect has intended us to forgo their use. (Venturi 1818, p. 222)

  A rare exception among scientists, Galileo saw the unknown as a place to explore rather than as an eternal mystery controlled by the hand of God.

  As long as the celestial sphere was general
ly regarded as the domain of the divine, the fact that mere mortals could not explain its workings could safely be cited as proof of the higher wisdom and power of God. But beginning in the sixteenth century, the work of Copernicus, Kepler, Galileo, and Newton—not to mention Maxwell, Heisenberg, Einstein, and everybody else who discovered fundamental laws of physics—provided rational explanations for an increasing range of phenomena. Little by little, the universe was subjected to the methods and tools of science, and became a demonstrably knowable place.

  THEN, IN WHAT amounts to a stunning yet unheralded philosophical inversion, throngs of ecclesiastics and scholars began to declare that it was the laws of physics themselves that served as proof of the wisdom and power of God.

  One popular theme of the seventeenth and eighteenth centuries was the “clockwork universe”—an ordered, rational, predictable mechanism fashioned and run by God and his physical laws. The early telescopes, which all relied on visible light, did little to undercut that image of an ordered system. The Moon revolved around Earth. Earth and other planets rotated on their axes and revolved around the Sun. The stars shone. The nebulae floated freely in space.

  Not until the nineteenth century was it evident that visible light is just one band of a broad spectrum of electromagnetic radiation—the band that human beings just happen to see. Infrared was discovered in 1800, ultraviolet in 1801, radio waves in 1888, x-rays in 1895, and gamma rays in 1900. Decade by decade in the following century, new kinds of telescopes came into use, fitted with detectors that could “see” these formerly invisible parts of the electromagnetic spectrum. Now astrophysicists began to unmask the true character of the universe.

 

‹ Prev