The Golden Age of Science Fiction Novels Vol 05

Home > Nonfiction > The Golden Age of Science Fiction Novels Vol 05 > Page 386
The Golden Age of Science Fiction Novels Vol 05 Page 386

by Anthology


  CHAPTER XI.

  IMAGINATION AND REALITY.

  "Have you ever seen the moon?" a professor asked one of his pupils ironically.

  "No, sir," answered the pupil more ironically still, "but I have heard it spoken of."

  In one sense the jocose answer of the pupil might have been made by the immense majority of sublunary beings. How many people there are who have heard the moon spoken of and have never seen it--at least through a telescope! How many even have never examined the map of their satellite!

  Looking at a comprehensive selenographic map, one peculiarity strikes us at once. In contrast to the geographical arrangements of the earth and Mars, the continents occupy the more southern hemisphere of the lunar globe. These continents have not such clear and regular boundary-lines as those of South America, Africa, and the Indian Peninsula. Their angular, capricious, and deeply-indented coasts are rich in gulfs and peninsulas. They recall the confusion in the islands of the Sound, where the earth is excessively cut up. If navigation has ever existed upon the surface of the moon it must have been exceedingly difficult and dangerous, and the Selenite mariners and hydrographers were greatly to be pitied, the former when they came upon these perilous coasts, the latter when they were marine surveying on the stormy banks.

  It may also be noticed that upon the lunar spheroid the South Pole is much more continental than the North Pole. On the latter there is only a slight strip of land capping it, separated from the other continents by vast seas. (When the word "seas" is used the vast plains probably covered by the sea formerly must be understood.) On the south the land covers nearly the whole hemisphere. It is, therefore, possible that the Selenites have already planted their flag on one of their poles, whilst Franklin, Ross, Kane, Dumont d'Urville, and Lambert have been unable to reach this unknown point on the terrestrial globe.

  Islands are numerous on the surface of the moon. They are almost all oblong or circular, as though traced with a compass, and seem to form a vast archipelago, like that charming group lying between Greece and Asia Minor which mythology formerly animated with its most graceful legends. Involuntarily the names of Naxos, Tenedos, Milo, and Carpathos come into the mind, and you seek the ship of Ulysses or the "clipper" of the Argonauts. That was what it appeared to Michel Ardan; it was a Grecian Archipelago that he saw on the map. In the eyes of his less imaginative companions the aspect of these shores recalled rather the cut-up lands of New Brunswick and Nova Scotia; and where the Frenchman looked for traces of the heroes of fable, these Americans were noting favourable points for the establishment of mercantile houses in the interest of lunar commerce and industry.

  Some remarks on the orographical disposition of the moon must conclude the description of its continents, chains of mountains, isolated mountains, amphitheatres, and watercourses. The moon is like an immense Switzerland--a continual Norway, where Plutonic influence has done everything. This surface, so profoundly rugged, is the result of the successive contractions of the crust while the orb was being formed. The lunar disc is propitious for the study of great geological phenomena. According to the remarks of some astronomers, its surface, although more ancient than the surface of the earth, has remained newer. There there is no water to deteriorate the primitive relief, the continuous action of which produces a sort of general levelling. No air, the decomposing influence of which modifies orographical profiles. There Pluto's work, unaltered by Neptune's, is in all its native purity. It is the earth as she was before tides and currents covered her with layers of soil.

  After having wandered over these vast continents the eye is attracted by still vaster seas. Not only does their formation, situation, and aspect recall the terrestrial oceans, but, as upon earth, these seas occupy the largest part of the globe. And yet these are not liquid tracts, but plains, the nature of which the travellers hoped soon to determine.

  Astronomers, it must be owned, have decorated these pretended seas with at least odd names which science has respected at present. Michel Ardan was right when he compared this map to a "map of tenderness," drawn up by Scudery or Cyrano de Bergerac.

  "Only," added he, "it is no longer the map of sentiment like that of the 18th century; it is the map of life, clearly divided into two parts, the one feminine, the other masculine. To the women, the right hemisphere; to the men, the left!"

  When he spoke thus Michel made his prosaic companions shrug their shoulders. Barbicane and Nicholl looked at the lunar map from another point of view to that of their imaginative friend. However, their imaginative friend had some reason on his side. Judge if he had not.

  In the left hemisphere stretches the "Sea of Clouds," where human reason is so often drowned. Not far off appears the "Sea of Rains," fed by all the worries of existence. Near lies the "Sea of Tempests," where man struggles incessantly against his too-often victorious passions. Then, exhausted by deceptions, treasons, infidelities, and all the procession of terrestrial miseries, what does he find at the end of his career? The vast "Sea of Humours," scarcely softened by some drops from the waters of the "Gulf of Dew!" Clouds, rain, tempests, humours, does the life of man contain aught but these? and is it not summed up in these four words?

  The right-hand hemisphere dedicated to "the women" contains smaller seas, the significant names of which agree with every incident of feminine existence. There is the "Sea of Serenity," over which bends the young maiden, and the "Lake of Dreams," which reflects her back a happy future. The "Sea of Nectar," with its waves of tenderness and breezes of love! The "Sea of Fecundity," the "Sea of Crises," and the "Sea of Vapours," the dimensions of which are, perhaps, too restricted, and lastly, that vast "Sea of Tranquillity" where all false passions, all useless dreams, all unassuaged desires are absorbed, and the waves of which flow peacefully into the "Lake of Death!"

  What a strange succession of names! What a singular division of these two hemispheres of the moon, united to one another like man and woman, and forming a sphere of life, carried through space. And was not the imaginative Michel right in thus interpreting the fancies of the old astronomers?

  But whilst his imagination thus ran riot on the "seas," his grave companions were looking at things more geographically. They were learning this new world by heart. They were measuring its angles and diameters.

  To Barbicane and Nicholl the "Sea of Clouds" was an immense depression of ground, with circular mountains scattered about on it; covering a great part of the western side of the southern hemisphere, it covered 184,800 square leagues, and its centre was in south latitude 15°, and west longitude 20°. The Ocean of Tempests, Oceanus Procellarum, the largest plain on the lunar disc, covered a surface of 328,300 square leagues, its centre being in north latitude 10°, and east longitude 45°. From its bosom emerge the admirable shining mountains of Kepler and Aristarchus.

  More to the north, and separated from the Sea of Clouds by high chains of mountains, extends the Sea of Rains, Mare Imbrium, having its central point in north latitude 35° and east longitude 20°; it is of a nearly circular form, and covers a space of 193,000 leagues. Not far distant the Sea of Humours, Mare Humorum, a little basin of 44,200 square leagues only, was situated in south latitude 25°, and east longitude 40°. Lastly, three gulfs lie on the coast of this hemisphere--the Torrid Gulf, the Gulf of Dew, and the Gulf of Iris, little plains inclosed by high chains of mountains.

  The "Feminine" hemisphere, naturally more capricious, was distinguished by smaller and more numerous seas. These were, towards the north, the Mare Frigoris, in north latitude 55° and longitude 0°, with 76,000 square leagues of surface, which joined the Lake of Death and Lake of Dreams; the Sea of Serenity, Mare Serenitatis, by north latitude 25° and west longitude 20°, comprising a surface of 80,000 square leagues; the Sea of Crises, Mare Crisium, round and very compact, in north latitude 17° and west longitude 55°, a surface of 40,000 square leagues, a veritable Caspian buried in a girdle of mountains. Then on the equator, in north latitude 5° and west longitude 25°, appeared the Sea of Tranquil
lity, Mare Tranquillitatis, occupying 121,509 square leagues of surface; this sea communicated on the south with the Sea of Nectar, Mare Nectaris, an extent of 28,800 square leagues, in south latitude 15° and west longitude 35°, and on the east with the Sea of Fecundity, Mare Fecunditatis, the vastest in this hemisphere, occupying 219,300 square leagues, in south latitude 3° and west longitude 50°. Lastly, quite to the north and quite to the south lie two more seas, the Sea of Humboldt, Mare Humboldtianum, with a surface of 6,500 square leagues, and the Southern Sea, Mare Australe, with a surface of 26,000.

  In the centre of the lunar disc, across the equator and on the zero meridian, lies the centre gulf, Sinus Medii, a sort of hyphen between the two hemispheres.

  Thus appeared to the eyes of Nicholl and Barbicane the surface always visible of the earth's satellite. When they added up these different figures they found that the surface of this hemisphere measured 4,738,160 square leagues, 3,317,600 of which go for volcanoes, chains of mountains, amphitheatres, islands--in a word, all that seems to form the solid portion of the globe--and 1,410,400 leagues for the seas, lake, marshes, and all that seems to form the liquid portion, all of which was perfectly indifferent to the worthy Michel.

  It will be noticed that this hemisphere is thirteen and a-half times smaller than the terrestrial hemisphere. And yet upon it selenographers have already counted 50,000 craters. It is a rugged surface worthy of the unpoetical qualification of "green cheese" which the English have given it.

  When Barbicane pronounced this disobliging name Michel Ardan gave a bound.

  "That is how the Anglo-Saxons of the 19th century treat the beautiful Diana, the blonde Phoebe, the amiable Isis, the charming Astarte, the Queen of Night, the daughter of Latona and Jupiter, the younger sister of the radiant Apollo!"

  CHAPTER XII.

  OROGRAPHICAL DETAILS.

  It has already been pointed out that the direction followed by the projectile was taking us towards the northern hemisphere of the moon. The travellers were far from that central point which they ought to have touched if their trajectory had not suffered an irremediable deviation.

  It was half-past twelve at night. Barbicane then estimated his distance at 1,400 kilometres, a distance rather greater than the length of the lunar radius, and which must diminish as he drew nearer the North Pole. The projectile was then not at the altitude of the equator, but on the tenth parallel, and from that latitude carefully observed on the map as far as the Pole, Barbicane and his two companions were able to watch the moon under the most favourable circumstances.

  In fact, by using telescopes, this distance of 1,400 kilometres was reduced to fourteen miles, or four and a-half leagues. The telescope of the Rocky Mountains brought the moon still nearer, but the terrestrial atmosphere singularly lessened its optical power. Thus Barbicane, in his projectile, by looking through his glass, could already perceive certain details almost imperceptible to observers on the earth.

  "My friends," then said the president in a grave voice, "I do not know where we are going, nor whether we shall ever see the terrestrial globe again. Nevertheless, let us do our work as if one day it would be of use to our fellow-creatures. Let us keep our minds free from all preoccupation. We are astronomers. This bullet is the Cambridge Observatory transported into space. Let us make our observations."

  That said, the work was begun with extreme precision, and it faithfully reproduced the different aspects of the moon at the variable distances which the projectile reached in relation to that orb.

  Whilst the bullet was at the altitude of the 10th north parallel it seemed to follow the 20th degree of east longitude.

  Here may be placed an important remark on the subject of the map which they used for their observations. In the selenographic maps, where, on account of the reversal of objects by the telescope, the south is at the top and the north at the bottom, it seems natural that the east should be on the left and the west on the right. However, it is not so. If the map were turned upside down, and showed the moon as she appears, the east would be left and the west right, the inverse of the terrestrial maps. The reason of this anomaly is the following:--Observers situated in the northern hemisphere--in Europe, for example--perceive the moon in the south from them. When they look at her they turn their backs to the north, the opposite position they take when looking at a terrestrial map. Their backs being turned to the north, they have the east to the left and the west to the right. For observers in the southern hemisphere--in Patagonia, for example--the west of the moon would be on their left and the east on their right, for the south would be behind them.

  Such is the reason for the apparent reversal of these two cardinal points, and this must be remembered whilst following the observations of President Barbicane.

  Helped by the Mappa Selenographica of Boeer and Moedler, the travellers could, without hesitating, survey that portion of the disc in the field of their telescopes.

  "What are we looking at now?" asked Michel.

  "At the northern portion of the Sea of Clouds," answered Barbicane. "We are too far off to make out its nature. Are those plains composed of dry sand, as the first astronomers believed? Or are they only immense forests, according to the opinion of Mr. Waren de la Rue, who grants a very low but very dense atmosphere to the moon? We shall find that out later on. We will affirm nothing till we are quite certain."

  "This Sea of Clouds is rather doubtfully traced upon the maps. It is supposed that this vast plain is strewn with blocks of lava vomited by the neighbouring volcanoes on its right side, Ptolemy, Purbach, and Arzachel. The projectile was drawing sensibly nearer, and the summits which close in this sea on the north were distinctly visible. In front rose a mountain shining gloriously, the top of which seemed drowned in the solar rays."

  "That mountain is--?" asked Michel.

  "Copernicus," answered Barbicane.

  "Let us have a look at Copernicus," said Michel.

  This mountain, situated in north latitude 9°, and east longitude 20°, rises to a height of nearly 11,000 feet above the surface of the moon. It is quite visible from the earth, and astronomers can study it with ease, especially during the phase between the last quarter and the new moon, because then shadows are thrown lengthways from east to west, and allow the altitudes to be taken.

  Copernicus forms the most important radiating system in the southern hemisphere, according to Tycho Brahe. It rises isolated like a gigantic lighthouse over that of the Sea of Clouds bordering on the Sea of Tempests, and it lights two oceans at once with its splendid rays. Those long luminous trails, so dazzling at full moon, made a spectacle without an equal; they pass the boundary chains on the north, and stretch as far as the Sea of Rains. At 1 a.m., terrestrial time, the projectile, like a balloon carried into space, hung over this superb mountain.

  Barbicane could perfectly distinguish its chief features. Copernicus is comprehended in the series of annular mountains of the first order in the division of the large amphitheatres. Like the mountains of Kepler and Aristarchus, which overlook the Ocean of Tempests, it appears sometimes like a brilliant point through the pale light, and used to be taken for a volcano in activity. But it is only an extinct volcano, like those on that side of the moon. Its circumference presented a diameter of about twenty-two leagues. The glasses showed traces of stratifications in it produced by successive eruptions, and its neighbourhood appeared strewn with volcanic remains, which were still seen in the crater.

  "There exist," said Barbicane, "several sorts of amphitheatres an the surface of the moon, and it is easy to see that Copernicus belongs to the radiating class. If we were nearer it we should perceive the cones which bristle in the interior, and which were formerly so many fiery mouths. A curious arrangement, and one without exception on the lunar disc, is presented on the interior surface of these amphitheatres, being notably downward from the exterior plane, a contrary form to that which terrestrial craters present. It follows, therefore, that the general curvature at the bottom of these amphith
eatres gives us fear of an inferior diameter to that of the moon."

  "What is the reason of this special arrangement?" asked Nicholl.

  "It is not known," answered Barbicane.

  "How splendidly it shines!" said Michel. "I think it would be difficult to see a more beautiful spectacle!"

  "What should you say, then," answered Barbicane, "if the chances of our journey should take us towards the southern hemisphere?"

  "Well, I should say it is finer still," replied Michel Ardan.

  At that moment the projectile hung right over the amphitheatre. The circumference of Copernicus formed an almost perfect circle, and its steep ramparts were clearly defined. A second circular inclosure could even be distinguished. A grey plain of wild aspect spread around on which every relief appeared yellow. At the bottom of the amphitheatre, as if in a jewel-case, sparkled for one instant two or three eruptive cones like enormous dazzling gems. Towards the north the sides of the crater were lowered into a depression which would probably have given access to the interior of the crater.

  As they passed above the surrounding plain Barbicane was able to note a large number of mountains of slight importance, amongst others a little circular mountain called "Gay-Lussac," more than twenty-three kilometres wide. Towards the south the plain was very flat, without one elevation or projection of the soil. Towards the north, on the contrary, as far as the place where it borders on the Ocean of Tempests, it was like a liquid surface agitated by a storm, of which the hills and hollows formed a succession of waves suddenly coagulated. Over the whole of this, and in all directions, ran the luminous trails which converged to the summit of Copernicus. Some had a width of thirty kilometres over a length that could not be estimated.

 

‹ Prev