The Greatest Story Ever Told—So Far

Home > Other > The Greatest Story Ever Told—So Far > Page 30
The Greatest Story Ever Told—So Far Page 30

by Lawrence M. Krauss


  SimonandSchuster.com

  Authors.SimonandSchuster.com/Lawrence-M-Krauss

  Facebook.com/AtriaBooks

  @AtriaBooks

  ALSO BY LAWRENCE M. KRAUSS

  A Universe from Nothing

  The Fifth Essence

  Fear of Physics

  The Physics of Star Trek

  Beyond Star Trek

  Hiding in the Mirror

  Quintessence

  Atom

  Quantum Man

  We hope you enjoyed reading this Simon & Schuster ebook.

  * * *

  Get a FREE ebook when you join our mailing list. Plus, get updates on new releases, deals, recommended reads, and more from Simon & Schuster. Click below to sign up and see terms and conditions.

  CLICK HERE TO SIGN UP

  Already a subscriber? Provide your email again so we can register this ebook and send you more of what you like to read. You will continue to receive exclusive offers in your inbox.

  INDEX

  A note about the index: The pages referenced in this index refer to the page numbers in the print edition. Clicking on a page number will take you to the ebook location that corresponds to the beginning of that page in the print edition. For a comprehensive list of locations of any word or phrase, use your reading system’s search function.

  A

  action quantum, 79

  Alda, Alan, 51

  Allegory of the Cave (Plato), 11–14, 15, 247, 303, 304. See also Plato’s cave allegory

  alpha particles, 116

  alpha rays, 119

  Ampere, André-Marie, 30

  Anderson, Carl, 94, 117, 132, 146–47

  Anderson, Philip, 194, 198–99, 200, 202–3, 204, 206

  antimatter

  Feynman’s research on, 97, 130

  matter’s interaction with, 95

  strangeness of, 95–96

  antineutrons, 95

  antiparticles, 95, 97, 100, 102–4, 107, 111, 114, 115

  antiprotons, 95, 251–52, 253, 263

  antiquarks, 233, 240, 242–43, 250, 257

  Appelquist, Tom, 241

  Aristotle, 46, 47

  artificial radioactivity, 119, 128

  asymptotic freedom, 238–41, 245

  ATLAS detector, CERN, 268, 272

  atomic bomb, development of, 30–31, 129, 133, 134, 147

  B

  Baker, J. A., 303

  Bardeen, John, 184

  Bardeen-Cooper-Schrieffer (BCS) theory of superconductivity, 187, 188

  Becker, Herbert, 116–17, 118

  BEH mechanism. See Higgs mechanism

  beta rays, 119, 121

  Bethe, Hans, 134–37

  atomic bomb research of, 133

  background of, 134

  nuclear reaction research of, 135–36

  personality of, 134–35

  Bethe ansatz, 135

  Bethe formula, 135

  Bethe’s Bible, 135

  Bible, 1–2, 21, 22, 133, 135, 302

  BICEP (Background Imaging of Cosmic Extragalactic Polarization) experiment, 292–93

  Bjorken, James, 233, 236, 237

  black holes, 293

  Chandra’s theory on, 153

  possibility of universes beyond, 10–11

  Block, Marty, 157–58

  Boehm, Felix, 163, 164

  Boltzmann, Ludwig, 78

  Born, Max, 84, 85, 87, 127

  Bose, Satyendra Nath, 185

  Bose-Einstein condensation, 185–86

  Bothe, Walther, 116–17, 118, 119

  bottom quarks, 247, 257, 258

  Breit, Gregory, 169

  Brout, Robert, 206–7, 211

  Brown, Hanbury, 72

  Bruno, Giordano, 21

  C

  Cabibbo, Nicola, 203

  Callan, Curtis, 236, 237

  carbon–nitrogen–oxygen (CNO) cycle, 136

  Cassen, Benedict, 169

  Catholic Church

  early pioneers in science and, 21–22

  Galileo’s belief about Earth and rest and, 45, 47

  cave allegory. See Plato’s cave allegory

  Chadwick, James, 117–19, 121, 123, 128

  Chandrasekhar, Subrahmanyan (“Chandra”), 153

  Chew, Geoffrey, 192, 235

  Chopra, Deepak, 86, 99

  Clay Mathematics Institute, 244

  Cline, David, 251

  CMS detector, CERN, 263–64, 267–68, 272

  CNO cycle, 136

  coincidence methods, 116

  Coleman, Sidney, 220, 238, 239

  color photograph, Maxwell’s work on, 33, 35

  Columbus, Christopher, 52

  Condon, Edward, 169

  Cooper, Leon, 184, 185

  Cooper pairs, 185–86, 187–88, 197–98, 199

  Cornell, Eric, 186

  cosmic microwave background (CMB) radiation, 290, 292–93

  cosmological constant, 295–96

  Coulomb, Charles de, 30

  creativity, 51–52

  Curie, Marie, 117, 119

  D

  Darwin, Charles, 5, 20, 21

  Davis, Ray, 280–81

  Davy, Humphry, 25, 26

  Dawkins, Richard, 22

  Dent, James, 297

  Descartes, René, 22

  Dick, Philip K., 12

  dimensional analysis, 36

  Dirac, Paul Adrien Maurice, 85, 91–95

  antiparticle discovery by, 95, 97, 114, 115

  combination of quantum mechanics and relativity by, 92, 95, 151

  Einstein on, 91

  electron equation of, 92–94, 99, 114

  Feynman compared with, 97–98

  Feynman’s first meeting with, 92

  Feynman’s research based on, 99

  mathematical prediction of new particle by, 93–94, 143

  personality of, 91–92, 98

  quantum theory of radiation and, 98, 99

  Dirac equation, 92–94

  displacement current, 37

  double-slit experiment with light, 74–76, 77, 88

  Dyson, Freeman, 85, 106, 235

  E

  Eddington, Sir Arthur Stanley, 135

  Eightfold Way (Gell-Mann), 193–94

  Einstein, Albert, 4, 42, 49–68

  background of, 46

  Bose-Einstein condensation research by, 185–86

  clocks relative to moving objects (time dilation) research of, 58–61

  creativity and intellectual confidence of, 52

  Dirac described by, 91

  Galileo-Maxwell paradox resolution by, 49–54, 58, 64–65

  General Theory of Relativity of, 10, 42, 68, 85, 110, 126, 295

  gravity and, 114

  inferences about real world using measurements and, 61–65

  letter to President Roosevelt from, 129

  Minkowski’s four-dimensional “space-time” theory and, 66–68, 71

  Planck’s relationship with, 80–81

  relativity discovery of, 95

  ruler measurement example of relativity and, 65–67

  space and time theory of, 55–58, 66, 68

  Special Theory of Relativity of, 68, 80

  electric charges

  Faraday’s research on, 25–30, 37–38, 68, 195

  quantum electrodynamics (QED) and symmetry of, 106, 107

  electric fields, Farady’s visualization of action of, 27–30, 193–94

  electricity, Maxwell’s theory of magnetism and, 36–39, 48, 94, 218, 219

  electromagnetic waves

  calculation of speed of, 42, 50–51

  Faraday cage shield against, 195

  Maxwell on light as, 42, 219

  Maxwell’s discovery of, 41, 42, 46, 74

  as particles, 81, 82

  superconductors and different polarizations of, 199–200

  electromagnetism

  gauge symmetry in quantum theory of, 111

  Maxwell’s research on, 39–43, 46, 50–51, 68,
74, 109

  electrons

  Dirac’s equation describing, 92–94

  electric charge configurations of, 93–94

  Feynman’s measurement of trajectories of, 100–102

  mathematical expression of wave function of, 77

  spin angular momentum of, 127, 164

  spin configurations of, 93

  Young’s double-slit experiment with beams of, 75–77

  electroweak symmetry, 254, 277, 282, 283–84, 285, 287, 290, 294, 296–97

  electroweak theory, 229, 278

  publications questioning, 227

  validation of, 228, 259

  electroweak unification, 216–17, 218, 222, 231, 250, 259, 278

  Englert, François, 206–7, 211, 271

  European Organization for Nuclear Research (CERN), 225, 236

  as dominant particle physics laboratory, 259, 262

  Gargamelle detector at, 223–24, 225

  Large Electron-Positron (LEP) Collider at, 262–63

  Large Hadron Collider (LHC) at, 61, 263–74, 275, 284, 285, 286–87, 299

  proton accelerator at, 222–23, 251

  Super Proton Synchrotron (SPS) at, 251–52, 260, 262

  evolution, 3, 5, 20

  exclusion principle (Pauli), 123, 127

  F

  Faraday, Michael, 24–30, 38

  background of, 24–25

  impact of discoveries of, 30, 31, 46, 68, 109

  magnetic induction discovery of, 26–27, 30, 36

  Maxwell’s meetings with, 36

  Maxwell’s research and, 37, 38

  research on electric charges and magnets by, 25–30, 37–38, 68, 195

  visualization of action of fields by, 27–30, 193–94

  Faraday cage, 195

  Feenberg, Eugene, 169

  Fermat, Pierre de, 98–99

  Fermi, Enrico, 125–32

  artificial radioactivity and, 128

  background of, 126–27

  experimental approach to physics used by, 129–30, 142

  impact of research of, 125–26

  neutrino named by, 123, 127, 130

  neutron decay theory of, 127–29, 130–32, 136, 142, 143, 145–46, 149

  nuclear research in Manhattan Project and, 129

  potential dangers in releasing energy of atomic nucleus and, 129

  statistical mechanics established by, 127

  weak interaction theory of, 161, 162, 164

  Yang’s work with, 153

  Yukawa’s research and, 143, 144, 145–46

  Fermi interaction, 136

  Fermilab (Fermi National Accelerator Laboratory, Batavia, Illinois), 31, 251, 261, 262–63

  fermions, 155, 185, 186, 233, 282, 283

  Fermi Problems, 130

  Feynman, Richard, 85, 97–106, 125, 159, 160, 228

  antiparticles and, 100, 102

  atomic bomb research of, 134

  Bethe’s approach and, 134

  Bjorken’s research on quarks and, 233

  Block’s research on weak interaction and, 157–58

  Dirac compared with, 97–98

  Dirac’s first meeting with, 92

  Dirac’s research used by, 99

  electron trajectory measurement in time and, 100–102, 130

  quantum electrodynamics (QED) and, 99, 102–6, 142, 175, 221, 235

  research approach used by, 175, 245

  on understanding quantum mechanics, 71

  weak interaction research of, 159, 163–64

  Fizeau, Hippolyte, 42

  Fourier analysis, 126

  Franklin, Benjamin, 170–71

  Friedman, Jerry, 160, 232–33

  G

  Galileo Galilei, 5, 21, 45–48

  Catholic Church’s trial of, 45, 47

  Einstein on Galileo-Maxwell paradox, 48–54, 58, 64–65

  motion and rest state theory of, 45–48, 49, 70, 97, 168, 245

  gamma rays, 116

  neutron mass measurement using, 119

  Rutherford’s discovery of, 119–20

  Gargamelle detector, CERN, 223–24, 225

  Garwin, Dick, 160

  gauge bosons, 214, 217, 233, 254, 277, 278

  gauge invariance, 109, 172, 198, 199, 228

  gauge symmetry

  chessboard analogy to explain conservation of energy in, 108–9

  description of, 108

  differences in philosophical viewpoints on, 109–10

  quantum electrodynamics and, 111–12

  understanding nature of reality using, 110

  Weyl’s naming of, 110–11

  gauge transformation, 109

  Geiger, Hans, 116, 118

  Gell-Mann, Murray

  Glashow’s work with, 178

  quarks and, 163, 193–94, 231–32, 233–34, 236, 240

  scale equations of, 237

  symmetry scheme of, 193, 214

  weak interaction research of, 163–64

  Yang-Mills theory and, 240–41

  General Theory of Relativity (Einstein), 10, 42, 68, 85, 110, 126, 295

  Genesis, 19, 43

  Georgi, Howard, 276–77, 278, 279

  Gilbert, Walter, 204–5

  Gladstone, William, 26

  Glashow, Sheldon, 177–79

  approach to research used by, 178

  background of, 177–78, 212

  CERN research and, 252

  electroweak unification and, 216–17, 218, 222, 278

  Grand Unification and, 277, 279

  on Higgs’s research, 207, 254, 276

  Krauss’s career and, 213, 214

  neutral currents and, 222, 225, 234

  quarks and, 234, 241

  Scottish Universities Summer School courses from, 203–4

  weak interaction research of, 178–79, 207, 219, 223, 225, 276–77

  Weinberg’s research and, 212–13, 218

  Gold, Tommy, 113, 121

  Goldstone, Jeffrey, 188, 203, 204, 206, 214

  Goldstone bosons, 206, 214–15, 217

  Grand Unified Theory (GUT), 277–79, 282–83, 290, 291, 292–93, 294

  gravity

  dimensional analysis of, 36

  Einstein’s research on, 114

  Newton’s research on, 5, 27–28, 38, 48

  quantum theory of, 110

  Greenberg, Oscar, 233, 240

  Gross, David, 235–41, 277

  asymptotic freedom discovery of, 238–41, 245

  background of, 235

  Gell-Mann’s influence on, 236

  quantum chromodynamics and, 241

  research on quarks by, 236–37

  scaling research of, 237–39

  Yang-Mills theory and, 239, 240–41

  group theory, 276

  Guralnik, Gerald, 207

  Gürsey, Feza, 123

  Guth, Alan, 290, 291–92

  H

  Hagen, C. R., 207

  Hall, Lawrence, 213

  Han, Moo-Young, 233

  Hegel, Georg Wilhelm Friedrich, 80

  Heisenberg, Werner, 84–86, 127

  background of, 84–85

  exchange of particles in nucleus and, 140–41

  on his discovery of quantum mechanics, 84, 85–86

  impact of discoveries of, 95, 151

  isotopic spin and, 169

  Yukawa’s work with research of, 142–43, 144

  Heisenberg uncertainty principle, 104, 105, 141

  classical worldview of nature versus, 91

  measurement of electron trajectories and, 100

  observer effect confused with, 90

  properties of quantum systems and, 86–90

  Higgs, Peter, 203–7, 231, 271

  background of, 203–4

  Glashow on research of, 207, 254, 276

  Higgs boson publication of, 206, 207

  quarks and, 204

  spontaneous symmetry and, 205–7, 214

  Higgs boson

  doubts about existence of, 255, 270
/>
  first publication on, 206

  forcing emergence of, 256–57

  gauge symmetry and, 217, 254, 255

  inflation and, 294–95

  mass estimation for, 254–55

  naming of, 207

  quantum mechanical properties of, 283

  reaction to discovery of, 274

  Standard Model and, 282–83, 288, 297

  supercollider for research on, 259, 262–63, 270, 271, 272–73, 275, 284, 285, 287

  supersymmetric scale of, 283–85

  weak interactions with, 217–18

  Z particle and, 220

  Higgs condensate, 217–18

  Higgs field, 248, 254, 256, 275–76, 284, 291

  Higgs mechanism, 211, 215, 218, 232

  high-temperature superconductors, 194–95

  Hilbert, David, 170

  Hitchens, Christopher, 305

  Hooke, Robert, 22, 24

  Huygens, Christiaan, 22

  I

  Iliopoulos, John, 234

  intensity interferometer, 72

  Introduction to Theoretical Physics (Planck), 142

  isotopic spin

  gauge symmetry and, 173, 175, 176

  Heisenberg’s invention of, 169

  nuclear reactions and conservation of, 171, 172, 173

  quark decay and, 234

  J

  Jeans, Sir James, 80

  Joliot-Curie, Irène and Frédéric, 116–18, 119

  Jordan, Pascual, 85

  K

  Kamiokande water detector, Japan, 280, 281

  Kendall, Henry, 232–33

  Keynes, John Maynard, 20–21

  Kibble, Tom, 207

  Klein, Abraham, 204, 205

  L

  Landau, Lev, 235–36, 237, 240

  Large Electron-Positron (LEP) Collider, CERN, 262–63

  Large Hadron Collider (LHC), CERN, 263–74

  characteristics of, 264–67

  dark matter research at, 286–87

  design and construction of, 263–64, 269–70

  detectors used at, 267–69

  Higgs discovery at, 271–73, 274, 285

  particle research using data collection at, 61, 269–71, 275, 299

  supersymmetric partners research at, 285

  Laser Interferometer Gravitational-Wave Observatory (LIGO), Washington and Louisiana, 293

  Lattes, Cesare, 148

  Law of Inertia, 48

  law of motion (Newton), 48, 72–73, 245

  law of radiation (Planck), 78–81, 89, 115

  Lederman, Leon, 160, 161

  Lee, Ben, 204, 205

  Lee, Tsung-Dao

  background of, 153–54

  parity doubling concept of, 157, 158–59, 160, 161, 168

  Yang’s collaborations with, 153–54

  Lenard, Philipp, 80

  Le Verrier, Urbain, 94

  Lewis, C. S., 10–11

  light

  Fermat’s principle on trajectory of, 98–99

  Genesis as source for understanding, 19, 43

 

‹ Prev