The Walking Whales

Home > Other > The Walking Whales > Page 9
The Walking Whales Page 9

by J G M Hans Thewissen


  otter, but very different in shape, with small feet and a long and power-

  ful tail, which is flat from top to bottom. All those differences in feet and

  tails relate to how these animals swim.

  Minks, for instance, are a close terrestrial relative of otters, and are

  probably similar to the ancestral otter from the time before they were

  aquatic. Minks are land animals, but occasionally they do swim. Their

  long, sleek body is well suited to dashing through the underbrush with-

  out  getting  caught  in  branches.  But  minks  are  slow  swimmers. They

  paddle with all four feet;13 left fore and right rear beat at the same time,

  as the animal struggles to keep its head above water in order to breathe.

  River otters are different. In the zoo, one can see them dash unpredict-

  ably left and right and up and down with a real or imagined playmate,

  but that is not the kind of swimming that Frank can study. To measure

  joint movements and swimming speed precisely, he needs to see the ani-

  mals  go  in  a  straight  line.  River  otters  swim  using  different  strokes,

  depending on how fast they want to go.14 They move from quadrupedal

  paddling and paddling with just the hind limbs (pelvic paddling), when

  swimming  at  the  surface,  to  dorsoventral  undulation  at  faster  speeds

  underwater. The latter is the most efficient. Waves traveling through the

  vertebral column propel mostly the tail, but also the hind feet. The sea

  sea lion

  seal

  Pectoral

  oscillation

  odes, based

  odern

  odes of

  Pelvic

  oscillation

  ing m

  inda Spurlock.

  otter shrew

  mim

  and into others, and

  platypus

  ings by L

  ploying those m

  wingro

  nating pectoral

  undulation

  Lateral caudal

  als em

  e draw

  m

  ustelids (otters and their relatives)

  Alter

  Lateral pelvic

  undulation

  ostly otter relatives and m

  am

  odes evolved from

  ode. M

  ere used to infer the sw

  usk rat

  ing m

  ilarly, m

  m

  odern m

  polar bear

  m

  sim

  ing m

  im

  m

  im

  im

  wing

  sw

  ples of m

  nating pectoral

  paddling

  nating pelvic

  ro

  how

  Alter

  Alter

  als that sw

  ith exam

  s show

  ore than one sw

  als, w

  rrow

  ill be discussed in future chapters. Som

  m

  am

  ploy m

  ading

  upedal

  ventral

  oxes contain anim

  hales, and their body proportions w

  ers em

  Pelvic

  paddling

  caudal

  m

  Quadr

  alking/w

  undulation

  odes in m

  w

  ventral

  Dorso

  Quadrupedal paddling

  im

  pelvic

  odes. B

  Dorso

  undulation

  Caudal

  ing m

  als by Frank Fish. A

  e sw

  oscillation

  m

  hales in this figure w

  mink

  m

  ater w

  im

  am

  Modern mammals

  giant

  otter

  ing evolution of w

  fresh

  odern

  m

  hippo

  ing m

  river otter

  im

  al m

  cetaceans

  m

  ploying those m

  sea otter

  im

  e of the fossil w

  als em

  ?

  he evolution of sw

  odern sw

  . T

  anim

  0

  lear bars indicate that som

  odels for the sw

  Fossil

  icetids

  whales

  Basilosaurus

  e 2

  pak

  orudon

  Ambulocetus

  D

  ru ork on m

  remingtonocetids

  fig

  on w

  outlines show

  cetaceans. C

  are good m

  extinct cetaceans . Som

  56    |    Chapter 4

  figure 21. Skeleton of  Ambulocetus,  a forty-eight-million-year-old whale from

  Pakistan, based on Thewissen et al. (1996). Soccer ball is 22 cm (8.5 inches) in

  diameter.

  otter swims underwater by moving its feet up and down, propelled by

  sinuous movements of its body: pelvic undulation. The feet are enor-

  mous and asymmetrical: they provide lift. Most interesting from a whale

  perspective  is  that  giant  South  American  freshwater  otter.  It  propels

  itself with its long tail, which it swings through the water in an up-and-

  down  fashion:  caudal  undulation.  Frank  put  it  all  together  and  pro-

  posed that whales went through locomotor changes in their evolution

  that are mirrored in the members of the modern otter group. And he did

  this before any fossils documenting that transition were found.

  That made the fossils the perfect way to check his results. If Frank

  was right, then the locomotor skeleton of  Ambulocetus should match

  that of one of those otters. And indeed,  Ambulocetus is proportionally

  like a river otter.15 It is likely that the terrestrial ancestors of whales were

  quadrupedal paddlers, since most land mammals swim that way. From

  there, it is likely that swimming modes in whales changed a number of

  times, going through stages represented by modern otters—alternating

  pelvic paddling; simultaneous pelvic paddling and dorsoventral pelvic

  undulation; caudal undulation—to finally end up as caudal oscillators.

  Since that work, more fossil whales have been discovered. An Eocene

  whale  from  India,  Kutchicetus  (discussed  in  detail  in  chapter  8),  is

  younger than  Ambulocetus and has flat tail vertebrae
 and short limbs,

  suggesting that it was a caudal undulator.16 Other analyses elaborated

  on this work. A complex mathematical analysis of whale skeletons geo-

  logically younger than  Ambulocetus confirmed that a hind-limb-domi-

  nated  phase  of  swimming  preceded  the  tail-based  phases.17  However,

  the  results  of  that  study  did  not  find  a  link  to  mustelids,  probably

  Learning to Swim | 57

  Kala Chitta Hills

  Chorlakki

  Islamabad

  Afghanistan

  Kalakot

  Simla

  Sulaiman Range

  Delhi

  Pakistan

  India

  Raoellid artiodactyls

  Pakicetid whales

  Ambulocetid whales

  Remingtonocetid whales

  Indian

  Protocetid whales

  Ocean

  Kutch

  Basilosaurid whales

  figure 22. Sites where fossils of Eocene whales and raoellid artiodactyls have been

  found in Pakistan and western India. Pakicetid, ambulocetid, and remingtonocetid (see

  chapter 8) whales, as well as raoellid artiodactyls (see chapter 14), are only known from

  this part of the world.

  because it did not include any data on the tail, which is probably of

  importance because it is the propulsive organ of modern whales.

  We already saw that the fluke of Dorudon indicates that it was a

  caudal oscillator. Basilosaurus does not have an analogue among the

  otters. Even though it retained the fluke of its ancestors, its vertebral

  column was extremely flexible. It was probably an undulator,18 along

  the lines of snakes and eels and different from any other cetacean.

  That killer whale that looked at me as I entered its enclosure could

  hardly be more different from the otters that Frank studied: screamingly

  black and white, smooth and robotic, the size of small bus. However, when

  making its rounds through the water, the differences blur. Both otters and

  whales are perfectly at ease in water—gracious, fast, and acrobatic. The

  up-and-down movement is apparent in both, even though one has a fluke

  58    |    Chapter 4

  and the other big feet. Here, then, one can see the hidden connections that

  evolution exposes. Modern otters’ swimming can teach us about swim-

  ming evolution in whales. The present is the key to the past. And  Ambu-

  locetus formed the icing on the evolutionary cake, showing that the forms

  predicted by inferences drawn from modern animals indeed existed.

  ambulocetid whales

  When  Ambulocetus  was  discovered,  it  was  the  only  whale  known  to

  have limbs that could support the animal, unlike the rudimentary hind

  limbs of basilosaurids and the internal hind limbs of modern cetaceans.

  As a result, locomotion was the focus of the excitement about the new

  species.  However,  the  skeleton  of  Ambulocetus  (figure  21)  also  repre-

  sented an intermediate form in other respects, allowing us to study other

  organ systems that changed as whales went from land mammals to obli-

  gate marine swimmers.  Ambulocetus is very different from all other fos-

  sil or modern cetaceans, and is classified in its own family: Ambuloceti-

  dae.  Fewer  than  ten  individuals  of  Ambulocetus natans  have  been

  discovered, all from the Kala Chitta Hills in northern Pakistan. The fam-

  ily  includes  two  other  genera,  and  both  are  from  Pakistan  and  India

  (figure 22). The first is  Gandakasia,  for which only a few teeth are known.

  Those teeth were not recognized as being from a whale when they were

  discovered at a site just a few miles from the  Ambulocetus site.19 The

  second  is  Himalayacetus,   for  which  a  single  lower  jaw  was  found  in

  the  Indian  Himalayas.20  Himalayacetus  was  thought  to  be  the  oldest

  whale in the world, at 53.5 million years, but it appears that this dating

  was based on associated fossils that washed in from older layers.21 It is

  likely that all ambulocetids lived around forty-eight million years ago.

  Nearly  all of  the  specimens known  for  Ambulocetus  are just  frag-

  ments, such as a single vertebra or a piece of jaw with a tooth. The only

  specimen of  Ambulocetus natans that tells us anything about the skele-

  ton  is  the  one  initially  found  by  Mr. Arif  (figure  23). The  size  of  the

  skeleton indicates that  Ambulocetus was about as large as a male sea

  lion.  Many  bones  are  known  for  that  specimen,  but  some  important

  parts are missing. For instance, the tip of the snout was never found,

  and as a result we have to infer its length from the lower jaw (which was

  found), and we do not know where the nose opening is.

  For a present-day person to imagine  Ambulocetus in its natural envi-

  ronment, the best bet would be to travel to a coastal swamp in a hot

  climate and study alligators (figure 19).  Ambulocetus looked like a croc-

  Learning to Swim | 59

  figure 23. All known fossil bones of one individual of Ambulocetus natans (H-GSP

  18507), with a hammer for scale.

  odilian with its long snout, compact body, short forelimbs, and power-

  ful, straight tail. The skin covering would be different— Ambulocetus

  was a mammal, with hair (possibly a sparse coat), whereas reptiles have

  scales. But just like alligators, Ambulocetus was probably an ambush

  predator, too slow to pursue prey on land or in water but able to jump

  on hapless prey that was close, either in the shallows, or at the water’s

  edge getting ready to drink.

  Feeding and Diet. With the tip of the snout missing, there is no way to

  determine how many upper teeth there were, but we do know that there

  were three upper molars, as can be expected for a basal placental mam-

  mal. In the lower dentition, the incisors are lined up from front to back,

  one canine, four premolars, and three molars. The lower molars of

  Ambulocetus are much simpler than those of basilosaurids. Instead of a

  row of cusps that decreases in height, Ambulocetus had a single high

  cusp in the front of the tooth (the trigonid) and a single much lower

  cusp in the back (the talonid). Analysis of the enamel of the teeth indi-

  cates that it fed on animals, consistent with its crocodile-like looks.

  Tooth wear in Ambulocetus is similar to that in other Eocene whales:

  there are steep shear facets that indicate forceful tooth-to-tooth contact,

  but not much wear caused by food that blunts the tips of the teeth. W
e

  will get back to that in chapter 11.

  60    |    Chapter 4

  Dog

  Porpoise

  Human

  soft palate

  epiglottis

  epiglottis

  soft palate

  soft palate

  epiglottis

  larynx

  Dog

  Dolphin

  Ambulocetus

  hard palate

  hard palate

  hard palate

  hyoid

  hyoid

  hyoid

  figure 24. The paths of food (red) and air (blue) cross in the throat of mammals.

  Top diagrams show sections through the midline plane. Note how the red arrow

  passes to the side (laterally) of the blue one in all, but how different the relative

  location of soft palate and epiglottis is. Bottom drawings show the same paths

  superimposed on the skulls and hyoids of three mammals, showing the extension

  of  Ambulocetus’s palate to the back.

  Swallowing

  The  most  puzzling  part  of  the  skull  of  Ambulocetus  is  the  area  of

  the throat. In most mammals, the bony part of the palate (the hard

  palate)  ends  near  the  back  of  the  teeth  (figure  24).  Behind  that  is

  the soft palate, a wall of connective tissue and muscle that separates

  the rear of the mouth (the oral cavity) from the rear of the nose (the

  nasopharyngeal duct) just before both open into the throat.22 Food is

  carried from mouth to the throat, and air is transported through the

  nasopharyngeal duct to the throat. In humans, a little tissue flap hangs

  from the back of the soft palate and is featured in many comic strips,

  but most animals do not have it. The throat anatomy of  Ambulocetus

  is different from that of most mammals. The hard palate goes back

  much beyond the teeth, all the way to the ears, and the nasopharyngeal

  duct and hard palate flare down (ventrally), into the back of the oral

  cavity. The soft palate does not fossilize, so we do not know about its

  anatomy, but certainly mouth and nose were separated by bone much

  farther back than in most mammals.

  Areas deeper in the neck are also different. In most land mammals,

 

‹ Prev