The Glass Cage: Automation and Us

Home > Other > The Glass Cage: Automation and Us > Page 28
The Glass Cage: Automation and Us Page 28

by Nicholas Carr


  dancing mice, 87–92

  Dancing Mouse, The (Yerkes), 85–86

  DARPA (Department of Defense laboratory), 165

  Dassault, 140

  data, 113, 114, 117, 119–22, 136, 167, 248n

  data fundamentalism, 122–23

  data processing, 17, 195

  decision aids, automated, 113–15, 166

  drawbacks to, 77

  decision making, 160, 166, 168

  decision trees, 113–14

  declarative knowledge, 9, 10–11, 83

  Deep Blue, 12

  degeneration effect, 65–85

  automation complacency and bias and, 67–72

  Whitehead’s views and, 65–67

  dementia, 135–37

  dependency, 130, 133, 136, 146, 203, 225

  depression, 220

  Descartes, René, 148, 216

  design, designers, 137–47

  computer-aided (CAD), 138–42, 144, 145, 167, 219, 229–30

  human- vs. technology-centered automation and, 158–62, 164–65, 167–70, 172

  parametric, 140–41

  system, 155–57

  video games as model for, 178–82

  Designerly Ways of Knowing (Cross), 143–44

  desire, 15, 17, 20, 83, 161, 206–7, 210

  to understand the world, 123–24

  deskilling, 55, 100, 106–12, 115

  Dewey, John, 148, 149, 220

  diabetes, 245n–46n

  diagnostic testing, 70–71, 99, 102

  DiFazio, William, 27–28

  Digital Apollo (Mindell), 60, 61

  disease, 70–71, 113, 135–37, 245n–46n

  dislocation, 133

  Do, Ellen Yi-Luen, 167

  Doctor Algorithm, 154, 155

  doctors, 12, 32, 70, 93–106, 114–15, 120, 123, 147, 155, 166, 173, 219

  evidence-based medicine (EBM) and, 114, 123

  patient’s relationship with, 103–6

  primary-care, 100–104, 154

  document discovery, 116

  Dodson, John Dillingham, 88–89

  Dorsey, Jack, 203

  Dorsey, Julie, 167–68

  Dostrovsky, Jonathan, 133

  dot-com bubble, 117, 194, 195

  drawing and sketching, 142–47

  Dreyfus, Hubert, 82

  driving, see cars and driving

  drone strikes, 188

  drugs, prescription, 220–21

  Drum, Kevin, 225

  Dyer-Witheford, Nick, 24

  Dyson, Freeman, 175

  Dyson, George, 20, 113

  Eagle, Alan, 176

  Ebbatson, Matthew, 55–56, 58

  ebook, 29

  economic growth, 22, 27, 30

  economic stability, 20

  Economist, 225

  economists, 9, 18, 22, 29, 30, 32–33, 109

  economy, economics, 20, 25–33, 117

  e-discovery, 116

  education, 113, 120, 153

  efficiency, 8, 17, 26, 58, 61, 114, 132, 139, 159, 173, 174, 176, 219

  EMR and, 101, 102

  factories and, 106–8

  electric grid, 195–96

  electronic medical records (EMR), 93–106, 114, 123, 245n–46n

  embodied cognition, 149–51, 213

  Emerson, Ralph Waldo, 16, 232

  End of Work, The (Rifkin), 28

  engagement, 14, 165

  Engels, Friedrich, 225

  Engineering a Safer World (Leveson), 155–56

  engineers, 34, 36–37, 46, 49, 50, 54, 59, 69, 119, 120, 139, 157–60, 162, 164, 168, 174, 175, 194, 196

  Enlightenment, 159–60

  entorhinal cortex, 134, 135

  equilibrium, of aircraft, 61–62

  ergonomics (human-factors engineering), 54, 158–60, 164–68

  Ericsson, K. Anders, 84

  essay-grading algorithms, 206

  ethical choices, 18, 61, 183–93, 221–22

  killer robots and, 187–93, 204

  self-driving cars and, 183–87, 193, 204

  top-down vs. bottom-up approach to, 189–91

  Ethics and Emergency Science Group, 189

  European Aviation Safety Agency, 58

  evidence-based medicine (EBM), 114, 123

  evolution, 137

  experience, 1, 23, 121, 123, 124, 150, 190, 218, 219, 226

  Experience Music Project, 140

  “experience sampling” study, 14–15, 18

  expert systems, 76–77

  explicit knowledge, 9, 10–11, 83

  eyeglasses, computerized, 199–202

  eyes, 143, 148, 201, 216, 223

  retina, 149–50

  Facebook, 181–82, 201, 203, 205–6

  factories, 22–26, 28, 106–8, 112, 118, 159, 174, 195, 222

  Farrell, Simon, 74

  Federal Aviation Administration (FAA), 1, 55, 170

  feedback, 36–37, 84, 85, 105, 114, 160, 165, 169

  negative, 71–72

  from video games, 178–79

  finance, 115–16, 120, 170–71, 173

  financial meltdown (2008), 77

  Fitts, Paul, 158

  Flight, 50, 59

  flight automation, 1, 49–63

  flight crews, 59

  flight engineers, 59

  flight simulators, 56, 200–201

  flow, 84–85, 96, 179, 213

  Flow (Csikszentmihalyi), 14–15

  fly-by-wire controls, 51–52, 55, 154, 168

  Forces of Production (Noble), 173–74

  Ford Motor Company, 34, 35, 38, 39

  Ford Pinto, 5

  France, 36, 45, 46, 159, 171

  Frankenstein, Julia, 129–30

  Frankenstein monster, 26, 30

  freedom, 17, 61, 207, 208, 226, 227, 228

  freight shipment, 196–97

  friction, 133, 181, 182

  frictionlessness, 180, 220

  frictionless sharing, 181–82

  Frost, Robert, 211–16, 218, 221–22, 232

  future, futurism, 226–28

  Gallagher, Shaun, 150

  gamification, 179n

  Gates, Bill, 197

  Gawande, Atul, 104

  GE, 31, 175, 195

  Gehry, Frank, 140

  General Motors, 27

  generation effect, 72–80, 84–85, 165

  genetic traits, 82–83

  Gensler, 167

  German Ideology, The (Marx), 235n

  Giedion, Sigfried, 237n

  Gilbert, Daniel, 15

  glass cockpits, 50, 55, 59, 168, 169

  Goldberger, Paul, 141

  Google, 6–8, 13, 78–80, 118, 176, 181, 182, 195

  cars, 6–8, 10, 12, 13, 153, 154–55, 183, 207, 208

  Google Glass, 136–37, 199–201, 203, 208

  Google Maps, 132, 136, 204–5

  Google Now, 199

  Google Suggest, 181, 200

  Google Ventures, 116

  Gorman, James, 134

  GPS, 52, 68–70, 126–37, 144

  “GPS and the End of the Road” (Schulman), 133

  Graves, Michael, 143, 145

  Gray, J. Macfarlane, 36–37

  Great Britain, 22–23, 35, 157

  Great Depression, 25–26, 27, 29, 38

  grid cells, 134

  Groopman, Jerome, 97–98, 105

  Gross, Mark, 167

  Gundotra, Vic, 203

  gunnery crews, 35–36, 41

  guns, 35–38, 41, 185

  habit formation, 88–89

  Hambrick, David, 83

  hands, 143, 144, 145, 216

  happiness, 14–16, 137, 203

  hardware, 7–8, 52, 118

  Harris, Don, 52–53, 63

  Hartzband, Pamela, 97–98

  Harvard Psychological Laboratory, 87

  Hayles, Katherine, 12–13

  Health Affairs, 99

  Health and Human Services Department, U.S., 94, 95

  health care, 33, 173

&n
bsp; computers and, 93–106, 113–15, 120, 123, 153–54, 155

  costs of, 96, 99

  diagnosis in, 10, 12, 70–71, 105, 113–15, 120, 123, 154, 155

  see also doctors; hospitals

  Health Information Technology Adoption Initiative, 93–94

  Heidegger, Martin, 148

  Hendren, Sara, 130–31

  Heyns, Christof, 188–89, 192

  hippocampus, 133–37

  Hippocrates, 158

  history, 124, 127, 159–60, 174, 227

  Hoff, Timothy, 100–102

  Hoover, Herbert, 26

  hospitals, 94–98, 102, 123, 155, 173

  How Doctors Think (Groopman), 105

  How We Think (Hayles), 13

  Hughes, Thomas, 172, 196

  human beings:

  boundaries between computers and, 10–12

  change and, 39, 40

  killing of, 184

  need for, 153–57

  robots as replications of, 36

  technology-first automation vs., 153–76

  Human Condition, The (Arendt), 108, 227–28

  humanism, 159–61, 164, 165

  Human Use of Human Beings, The (Wiener), 37, 38

  Huth, John Edward, 216–17

  iBeacon, 136

  IBM, 27, 118–20, 195

  IBM Systems Journal, 194–95

  identity, 205–6

  IEX, 171

  Illingworth, Leslie, 19, 33

  imagination, 25, 121, 124, 142, 143, 215

  inattentional blindness, 130

  industrial planners, 37

  Industrial Revolution, 21, 24, 28, 32, 36, 106, 159, 195

  Infiniti, 8

  information, 68–74, 76–80, 166

  automation complacency and bias and, 68–72

  health, 93–106, 113

  information overload, 90–92

  information underload, 90–91

  information workers, 117–18

  infrastructure, 195–99

  Ingold, Tim, 132

  integrated development environments (IDEs), 78

  Intel, 203

  intelligence, 137, 151

  automation of, 118–20

  human vs. artificial, 11, 118–20

  interdependent networks, 155

  internet, 12–13, 33n, 176, 188

  internet of things, 195

  Introduction to Mathematics, An, (Whitehead), 65

  intuition, 105–6, 120

  Inuit hunters, 125–27, 131, 217–20

  invention, 161, 174, 214

  iPads, 136, 153, 203

  iPhones, 13, 136

  Ironstone Group, 116

  “Is Drawing Dead?” (symposium), 144

  Jacquard loom, 36

  Jainism, 185

  Jefferson, Thomas, 160, 222

  Jeopardy! (quiz show), 118–19, 121

  Jobless Future, The (Aronowitz and DiFazio), 27–28

  jobs, 14–17, 27–33, 85, 193

  automation’s altering of, 67, 112–20

  blue-collar, 28, 109

  creating, 31, 32, 33

  growth of, 28, 30, 32

  loss of, 20, 21, 25, 27, 28, 30, 31, 40, 59, 115–18, 227

  middle class, 27, 31, 32, 33n

  white-collar, 28, 30, 32, 40, 109

  Jobs, Steve, 194

  Jones, Michael, 132, 136–37, 151

  Kasparov, Garry, 12

  Katsuyama, Brad, 171

  Kay, Rory, 58

  Kelly, Kevin, 153, 225, 226

  Kennedy, John, 27, 33

  Kessler, Andy, 153

  Keynes, John Maynard, 26–27, 66, 224, 227

  Khosla, Vinod, 153–54

  killing, robots and, 184, 185, 187–93

  “Kitty Hawk” (Frost), 215

  Klein, Gary, 123

  Knight Capital Group, 156

  know-how, 74, 76, 115, 122–23

  knowledge, 74, 76, 77, 79, 80–81, 84, 85, 111, 121, 123, 131, 148, 153, 206, 214, 215

  design, 144

  explicit (declarative), 9, 10–11, 83

  geographic, 128

  medicine and, 100, 113, 123

  tacit (procedural), 9–11, 83, 105, 113, 144

  knowledge workers, 17, 148

  Kool, Richard, 228–29

  Korzybski, Alfred, 220

  Kroft, Steve, 29

  Krueger, Alan, 30–31

  Krugman, Paul, 32–33

  Kurzweil, Ray, 181, 200

  labor, 227

  abridging of, 23–25, 28–31, 37, 96

  costs of, 18, 20, 31, 175

  deskilling of, 106–12

  division of, 106–7, 165

  intellectualization of, 118

  in “Mowing,” 211–14

  strife, 37, 175

  see also jobs; work

  Labor and Monopoly Capital (Braverman), 109–10

  Labor Department, U.S., 66

  labor unions, 25, 37, 59

  Langewiesche, William, 50–51, 170

  language, 82, 121, 150

  Latour, Bruno, 204, 208

  lawn mowers, robotic, 185

  lawyers, law, 12, 116–17, 120, 123, 166

  learning, 72–73, 77, 82, 84, 88–90, 175

  animal studies and, 88–89

  medical, 100–102

  Lee, John, 163–64, 166, 169

  LeFevre, Judith, 14, 15, 18

  leisure, 16, 25, 27, 227

  work vs., 14–16, 18

  lethal autonomous robots (LARs), 188–93

  Levasseur, Émile, 24–25

  Leveson, Nancy, 155–56

  Levesque, Hector, 121

  Levinson, Stephen, 101

  Levy, Frank, 9, 10

  Lewandowsky, Stephan, 74

  Lex Machina, 116–17

  Licklider, J. C. R., 223

  Lieberman, Matthew, 149

  Lindbergh, Charles, 223

  Lown, Beth, 103, 105

  Luddites, 23, 106, 108, 231

  Ludlam, Ned, 23

  MacCormac, Richard, 142–43

  Machine Age, 25

  machine-breaking, 22–23

  machine-centered viewpoint, 162–63

  machine learning, 113–14, 190

  machines, mechanization, 17–18, 20–41, 107–8, 110–12, 159, 161, 223, 237n

  economy of, 31

  as emancipators, 24–25

  at Ford, 34

  long history of ambivalence to, 21–41

  love for, 20

  planes and, 51, 52

  ugliness of, 21

  machine tool industry, 174

  Macmillan, Robert Hugh, 19–20, 21, 39

  mammograms, 70–71, 100

  management, 37, 38, 76, 108, 166, 175

  “Man-Computer Symbiosis” (Licklider), 223

  manual transmission, 3–6, 13, 80

  manufacturing, 5, 22, 30, 31, 37, 38, 106–7, 139, 195

  plane, 46, 52, 168–70

  Manzey, Dietrich, 71

  maps, 127, 151, 204–5, 219, 220

  cognitive, 129–30, 135

  paper vs. computer, 129–30

  Marcantonio, Dino, 141

  “March of the Machines” (TV segment), 29

  Marcus, Gary, 81, 83, 184

  Marx, Karl, 20, 23–24, 66, 224, 225, 235n

  Marx, Leo, 160

  master-slave metaphor, 224–26

  materiality, 142–43, 145, 146

  mathematicians, 119, 156

  Mayer-Schönberger, Viktor, 122

  McAfee, Andrew, 28–29, 30

  Meade, E. J., 146–47, 229–30

  meaning, 123, 220

  medical diagnosis, 10, 12, 70–71, 105, 113–15, 120, 123, 154, 155

  Medicare, 97

  Mehta, Mayank, 219–20

  Meinz, Elizabeth, 83

  Meister, David, 159

  memory, 72–75, 77–80, 84, 151

  drawing and, 143

  navigation and, 129–30, 133–37

  Men and Machines, 26


  mental models, 57

  Mercedes-Benz, 8, 136–37, 183

  Mercury astronauts, 58

  Merholz, Peter, 180

  Merleau-Ponty, Maurice, 216, 217–18, 220

  metalworkers, 111

  mice, dancing, 87–92

  microchips, 8, 114

  microlocation tracking, 136

  Microsoft, 195

  military, 35–37, 47, 49, 158, 159, 166, 174

  robots and, 187–93

  mind, 63, 121–24, 201, 213–14, 216

  body vs., 48–51, 215, 216

  computer as metaphor and model for, 119

  drawing and, 143, 144

  imaginative work of, 25

  unconscious, 83–84

  Mindell, David, 60, 61

  Missionaries and Cannibals, 75, 180

  miswanting, 15, 228

  MIT, 174, 175

  Mitchell, William J., 138

  mobile phones, 132–33

  Moore’s Law, 40

  Morozov, Evgeny, 205, 225

  Moser, Edvard, 134–35

  Moser, May-Britt, 134

  motivation, 14, 17, 124

  “Mowing” (Frost), 211–16, 218, 221–22

  Murnane, Richard, 9, 10

  Musk, Elon, 8

  Nadin, Mihai, 80

  NASA, 50, 55, 58

  National Safety Council, 208

  National Transportation Safety Board (NTSB), 44

  natural language processing, 113

  nature, 217, 220

  Nature, 155

  Nature Neuroscience, 134–35

  navigation systems, 59, 68–71, 217

  see also GPS

  Navy, U.S., 189

  Nazi Germany, 35, 157

  nervous system, 9–10, 36, 220–21

  Networks of Power (Hughes), 196

  neural networks, 113–14

  neural processing, 119n

  neuroergonomic systems, 165

  neurological studies, 9

  neuromorphic microchips, 114, 119n

  neurons, 57, 133–34, 150, 219

  neuroscience, neuroscientists, 74, 133–37, 140, 149

  New Division of Labor, The (Levy and Murnane), 9

  Nimwegen, Christof van, 75–76, 180

  Noble, David, 173–74

  Norman, Donald, 161

  Noyes, Jan, 54–55

  NSA, 120, 198

  numerical control, 174–75

  Oakeshott, Michael, 124

  Obama, Barack, 94

  Observer, 78–79

  Oculus Rift, 201

  Office of the Inspector General, 99

  offices, 28, 108–9, 112, 222

  automation complacency and, 69

  Ofri, Danielle, 102

  O’Keefe, John, 133–34

  Old Dominion University, 91

  “On Things Relating to the Surgery” (Hippocrates), 158

  oracle machine, 119–20

  “Outsourced Brain, The” (Brooks), 128

  Pallasmaa, Juhani, 145

  Parameswaran, Ashwin, 115

  Parameters, 191

  parametric design, 140–41

  parametricism, 140–41

  “Parametricism Manifesto” (Schumacher), 141

  Parasuraman, Raja, 54, 67, 71, 166, 176

  Parry, William Edward, 125

  pattern recognition, 57, 58, 81, 83, 113

  Pavlov, Ivan, 88

 

‹ Prev