(C12H18ClNO2) C,H,N. Reductive amination of the butanone with methylamine hydrochloride in MeOH, employing sodium cyano-borohydride, gave an identical product but in a smaller yield.
DOSAGE: 180 - 210 mg.
DURATION: 4 - 6 h.
QUALITATIVE COMMENTS: (with 210 mg) Generally very, very friendly, very quiet effect. I can read easily, but looking at pictures in most books is relatively meaningless. Distinct de-stressing effect, to the point where it's too much trouble to set out to do anything at all, really. There is just no drive, and it isnUt even bothersome to be missing it. Do I like it? Yes, very much. Feel that IUve just begun to explore it, though. Would I consider this material in therapy?
Well, sure, it's worth trying. Destressing would be excellent, and better than MDMA in some ways, but the empathy and intuition levels have yet to be explored in a therapy setting. I feel that they may be somehow lower.
(with 210 mg) Onset rapid. Alert 20 minutes, and to a +2.5 at 30 to 35 minutes. No physical symptoms, i.e., teeth clench, no stomach problems. Good visual enhancement; eyes open Q bright colors Q no visuals with eyes closed. No 'cone of silence' that I get with MDMA (and enjoy), otherwise IUm not sure I could tell which was which if I took them blind.
(with 210 mg and a 50 mg supplement) RTasted perfectly rotten.
Suspect I was getting some type of alert in 5 minutes (I often get one quickly with MDMA) and at 30 minutes, a full blown high developed rather abruptly. It would be difficult to describe the high. I suspect it is the lack of language for the phenomenon. I would describe it somewhat like an alcohol high without the disabling side effects of confusion, slurring, staggering and etc. The high never got any more intense than at that 30 minute point and with a noticeable drop in another hour, I took a 50 mg supplement. I enjoyed the high. I relaxed with the material. However, it did not seem to have the same qualities as MDMA, in that it was not as stimulating, and it had very little visual activity. I talked with others, but found it easy to lie down and relax. There was some jaw-clenching towards the end, and I had considerable nystagmus at the peak which I could control. After the experience, I did not want to drink alcohol very much (sell it as a substitute for EtOH!).
(with 210 mg and a 70 mg supplement) RI begin to feel the rush at 20
minutes, increasing rapidly. Very much like MDMA, only more intense intoxication. Otherwise same symptoms: intense euphoria that I call a feeling of grace, soft skin, voices, youthful appearance, animated discussions, feelings of great closeness to others. I start to drop noticeably at less than an hour and a half into it, but I delayed a supplement until the hour and fifty minute point. It does not get me back to the original intoxication. However, it is very nice, very much like MDMA. Only difference is that there seems to be more quietness, less inclination to talk than with an MDMA supplement. My conclusion: Seems an excellent substitute for MDMA, Next time may try somewhat lower amount, supplement sooner.
EXTENSIONS AND COMMENTARY: An observer who was familiar with the outwardly apparent effects with groups experimenting with MDMA felt that, although most subjects commented favorably in their comparisons of METHYL-J with MDMA, there was lacking some of the spontaneity, the warmth, and the clear intimacy of the latter drug. The dosage range explored is remarkably tight, attesting to a consistency of response.
The typical supplement used, if any, was 70 milligrams or less, just before the two hour point. This indicates a chronology similar to that of MDMA, and about two thirds the potency.
The arguments that weigh the use of the code name of MBDB against the use of METHYL-J are present in the recipe for BDB (or J). But what is the source of this H, I, J, K naming thing that I have called the Muni Metro?
First, a little bit of local color. In San Francisco, there is a public transportation called the S.F. Municipal Metropolitan System complex that has integrated an underground street-car system that emerges above ground and connects with a bus network. A number of the street-car lines fan across the city to the outer reaches which are called the Avenues. These lines are named by sequential letters.
There is the J Church Street line, the K Ingelside line, the L Taraval line, the M Ocean line, and the N Judah. And in the pharmacological complex that involved the lengthening of the aliphatic chain, there were two coincidental benchmarks in the names that were proposed.
Those without an alpha-substituent (no carbon atoms at the position alpha to the amine group, the phenethylamines) were originally called the H compounds. H stood for Rhomopiperonylamine.S And the first of those with the alpha-ethyl group there (two carbon atoms at the position alpha to the amine group) was familiarly called RJacobamineS
in recognition of a famous chemist who had set the synthetic wheels in motion.
It is quite obvious, that with one carbon atom lying on that alpha-position, you are precisely half-way between no carbons and two carbons. And there was one letter of the alphabet that lies precisely half-way between an H and a J. So, an natural naming pattern developed. The I compounds were already pretty well known by names such as MDA and MDMA and MDE, so I, and METHYL-I, and ETHYL-I, didnUt have any appeal. But for the new, the alpha-ethyl compounds, why not call them the J-compounds? If it has a methyl on the nitrogen it will be METHYL-J and if it has an ethyl group it will be ETHYL-J. And in the next longer group, the 3-carbon propyl group on the alpha-position becomes the K family, and the 4-carbon butyl group located there, the L family. Each with its METHYL and ETHYL prefixes, if the nitrogen atoms are substituted with a methyl or and ethyl group. VUla, comme on dit en Fran
ais. Le systme Muni Metro. Plus simple.
129 METHYL-K; 2-METHYLAMINO-1-(3,4-METHYLENEDIOXYPHENYL)PENTANE; N-METHYL-1-(1,3-BENZODIOXOL-5-YL)-2-PENTYLAMINE
SYNTHESIS: The Grignard reagent of butyl bromide was prepared in anhydrous Et2O by the dropwise addition of 68 g n-butyl bromide to a well-stirred suspension of 14 g magnesium turnings in 500 mL anhydrous Et2O. When the exothermic reaction had stopped, there was added a solution of 60 g piperonal in about 100 mL Et2O, over the course of 1
h. After the exothermic addition was complete, the reaction mixture was held at reflux for several h, then cooled and decomposed by the addition of dilute HCl. The phases were separated, and the aqueous phase extracted with 2x75 mL CH2Cl2. The organics were combined and gave, after the removal of the solvents under vacuum, 84 g of 1-hydroxy-1-(3,4-methylenedioxyphenyl)pentane as a yellow liquid.
This was used in the following dehydration step without further purification.
A mixture of 52 g of the crude
1-hydroxy-1-(3,4-methylenedioxyphenyl)pentane and 2 g powdered KHSO4
was heated with a flame until there was no more apparent generation of H2O. The resulting dark, fluid oil was distilled at 100-110 !C at 0.3
mm/Hg to give 29.5 g of 1-(3,4-methylenedioxyphenyl)-1-pentene as a light yellow liquid. This was employed in the following oxidation step without further purification.
To 120 mL of 90% formic acid there was added, with good stirring, 15
mL H2O, followed by 23 mL of 35% H2O2 To this mixture, cooled with an external ice bath, there was added a solution of 24 g crude 1-(3,4-methylenedioxyphenyl)-1-pentene in 120 mL acetone at a rate slow enough to keep the internal temperature from exceeding 35 !C. At the end of the addition, the temperature was brought up to 45 !C by heating briefly on the steam bath, and then the reaction mixture was allowed to stand and stir at ambient temperature for several h. All volatiles were removed under vacuum, with a bath temperature maintained at 45 !C. The residue was dissolved in 30 mL MeOH, then there was added 200 mL 15% H2SO4 and the mixture held on the steam bath for 1.5 h. There was then added an additional 300 mL H2O, and this was extracted with 2x250 mL of a petroleum ether/EtOAc (5:1) mixture. The extracts were pooled, and the solvents removed under vacuum to give a residue that was distilled at 115-120 !C at 0.3
mm/Hg. This light yellow liquid weighed 13.5 g and was substantially pure 1-(3,4-methylenedioxyphenyl)-2-pentanone by TLC.
&
nbsp; To 5.0 g of aluminum foil cut into 1 inch squares, there was added a solution of 150 mg HgCl2 in 200 mL H2O. The mixture was heated briefly until there were clear signs of active amalgamation, such as fine bubbling for the aluminum surfaces and the beginning of the formation of a gray, amorphous solid phase. The HgCl2 solution was decanted off and the aluminum was washed with 2x200 mL additional H2O.
After shaking as dry as possible, there was added, in sequence and with good swirling agitation between each addition, 10 g methylamine hydrochloride in 10 mL H2O, 27 mL IPA, 22 mL of 25% NaOH, 5.0 g 1-(3,4-methylenedioxyphenyl)-2-pentanone, and finally an additional 50
mL IPA. The mixture was heated on the steam bath periodically to maintain the reaction rate at a vigorous boil. When all of the aluminum had been consumed, the cooled mixture was filtered and the solids washed with MeOH. The combined filtrate and washings were stripped of solvent under vacuum. The residue was dissolved in dilute H2SO4 and washed with 2x75 mL CH2Cl2. After making basic again with 25% NaOH, this was extracted with 2x100 mL CH2Cl2, and the pooled extracts were stripped of solvent under vacuum. The residue was distilled at 105-110 !C at 0.3 mm/Hg to give 2.7 g of a colorless liquid. This was dissolved in 15 mL IPA, neutralized with concentrated HCl, and diluted with 75 mL anhydrous Et2O which allowed a delayed appearance of a fine white crystal. This was removed by filtration, Et2O washed, and air dried to give 2.45 g 2-aminomethyl-1-(3,4-methylenedioxyphenyl)pentane hydrochloride (METHYL-K) as a white product with a mp of 155-156 !C. Anal.
(C13H20ClNO2) C,H.
DOSAGE: greater than 100 mg.
DURATION: unknown.
QUALITATIVE COMMENTS: (with 100 mg) There were no effects. I was busy and totally wound up and didnUt sleep until 3 AM, but this was probably unrelated to the Me-K.
EXTENSIONS AND COMMENTARY: The well appears to be running dry, with a pentane chain as a basic skeleton. METHYL-J, at this level, was already showing a number of hints and clues, largely physical such as coldness in the feet and a slight mastoidal pressure, that activity was right around the corner. But METHYL-K gave no such hints. The unmethylated homologue, 2-amino-1-(3,4-methylenedioxyphenyl)pentane (K), was also made, by the reductive amination of 1-(3,4-methylene-dioxyphenyl)-2-pentanone with ammonium acetate and sodium cyanoborohydride in methanol. It was a white crystalline solid, mp 202-203 !C, but is given here in the comments only, as its human assaying had never even been initiated. Anal. (C12H18ClNO2) C,H. The N-ethyl homologue,
2-ethylamino-1-(3,4-methylene-dioxyphenyl)pentane (ETHYL-K), is entered with its own recipe, on the other hand, since testing had been started with it.
And the longest chain that has been explored in this Muni Metro series is the six-carbon hexyl chain which is, quite logically, the L-series, sort of the end of the Taraval line (see under METHYL-J for an explanation). The central compound for all the L-compounds was the ketone 1-(3,4-methylenedioxyphenyl)-2-hexanone, which was prepared by the Grignard reagent of (n)-amyl bromide with piperonal to give 1-hydroxy-1-(3,4-methylenedioxyphenyl)hexane, dehydration of this with potassium bisulfate to the olefin, and oxidation of this with hydrogen peroxide and formic acid to the L-ketone which was an orange-colored liquid with a bp of 125-135 !C at 0.3 mm/Hg. This ketone was reductively aminated with ammonium acetate and sodium cyanoborohydride in methanol to produce 2-amino-1-(3,4-methylenedioxyphenyl)hexane hydrochloride (L) as a white crystalline product with a mp of 157-158
!C. Anal. (C13H20ClNO2) C,H. And this ketone was reductively aminated with methylamine hydrochloride and amalgamated aluminum in isopropanol to produce
2-methylamino-1-(3,4-methylenedioxyphenyl)hexane hydrochloride (METHYL-L) as a white crystalline product with a mp of 139-141 !C.
Anal. (C14H22ClNO2) C,H. The reduction of this ketone in a similar manner with ethylamine hydrochloride produced 2-ethylamino-1-(3,4-methylenedioxyphenyl)hexane (ETHYL-L). None of this series has yet been explored either as psychedelic or entactogenic materials.
130 METHYL-MA; PMMA; DOONE; 4-MMA; 4-METHOXY-N-METHYLAMPHETAMINE
SYNTHESIS: A solution of 20 g methylamine hydrochloride in 150 mL hot MeOH was treated with 10.0 g 4-methoxyphenylacetone and stirred magnetically. After returning to room temperature, there was added 5.0 g sodium cyanoborohydride, followed by cautious addition of HCl as required to maintain the pH at about 6. The reaction was complete after a few days, and the mixture was poured into 800 mL H2O. This was acidified with HCl (HCN evolution!) and washed with 3x75 mL
CH2Cl2, which removed most of the yellow color. There was 25% NaOH
added to make the reaction mixture strongly basic, and this was extracted with 3x75 mL CH2Cl2. The solvent was removed from the pooled extracts under vacuum, and the 10.3 g of residue distilled at 0.3 mm/Hg. The 9.7 g of colorless oil that distilled at 75-90 !C was dissolved in 50 mL IPA, neutralized with 4.5 mL concentrated HCl, and then diluted with 100 mL anhydrous Et2O. There were generated glistening crystals of 4-methoxy-N-methylamphetamine hydrochloride (METHYL-MA or DOONE) that weighed, after washing with Et2O and air drying to constant weight, 11.0 g and which had a mp of 177-178 !C.
The same base can be made by the action of ethyl chloroformate on 4-MA in the presence of triethylamine to make the carbamate, or the action of formic acid to make the formamide. These can then be reduced with LAH to this same end product.
DOSAGE: greater than 100 mg.
DURATION: short.
QUALITATIVE COMMENTS: (with 110 mg) One hour into it, my pulse was up over 100, and I was compulsively yawning. There was some eye muscle disturbance, a little like the physical side of MDMA, but there was none of its central effects. But all the hints of the cardiovascular are there. By the fourth hour, I am pretty much back to baseline, but the yawning is still very much part of it. I might repeat this, at the same level, but with continuous close monitoring of the body.
EXTENSIONS AND COMMENTARY: Why would there be interest in this particular compound? The track record from the comparison of active compounds that are primary amines, and their N-methyl homologues, has shown that, in general, the stimulant component might be maintained, but the RpsychedelicS contribution is generally much reduced. MDMA is, of course, an exception, but then, that particular compound is a one-of-a-kind thing which simply defies all the rules anyway, and I drop it from this kind of reasoning. And as 4-MA is a pretty pushy stimulant with little if any sensory sparkle, why bother with the N-methyl compound at all?
For a completely silly and romantic reason. When the MDMA story became front-page news back in mid-1985, the cartoonist-author of Doonesbury, Gary Trudeau, did a two-week feature on it, playing it humorous, and almost (but not quite) straight, in a hilarious sequence of twelve strips. On August 19, 1985 he had Duke, president of Baby Doc College, introduce the drug design team from USC in the form of two brilliant twins, Drs. Albie and Bunny Gorp. They vividly demonstrated to the enthusiastic conference that their new drug RIntensityS was simply MDMA with one of the two oxygens removed.
RVoila,S said one of them, with a molecular model in his hands, RLegal as sea salt.S And what is MDMA with one oxygen atom removed? It is 4-methoxy-N-methylamphetamine or METHYL-MA which, according to the twins, should give the illusion of substance to one's alter ego. So, I called it Doonesamine, or simply RDOONES for short. Maybe that was also a homonym for Frank Herbert's science fiction book, RDune,S
wherein the magical drug RspiceS provided a most remarkable alteration of the user's state of consciousness.
This comic strip presentation was the first nationally distributed allusion to the term Rdesigner drugs,S and perhaps it lent unexpected support for the passage, just a year later, of the Controlled Substances Analogue Enforcement Act of 1986. This intentionally vague piece of legislation makes the giving of, or the taking of, or even the possession with the intent to take, any drug that in any way alters your state of consciousness, a felony. A shameful and desperate effort by the governmental authorities to maintain the image of control in a lost situation.
Enough editorial.
Back to historic technicalities. In truth, METHYL-MA is a well studied drug, at least in animals. In both mice and rats, it is an exceptionally potent agent in creating the state of catatonia. Animal studies, prompted by the clandestine synthesis of METHYL-MA, have shown that there is indeed locomotor stimulation and some central effects, but these effects are somehow different than those of a simple amphetamine-like agent. The experimenterUs conclusions, based on its structural resemblance to 4-MA and its proclivity to produce catatonia in some animal species and the ever-present possibility that there might be unsuspected neurochemical changes to be seen with its use, are that human experimentation should be discouraged. I have come to the same conclusion, but in my case this is based on a much more succinct observation: I tried it and I didnUt like it.
A brief comment on two of the N,N-dimethylhomologues of methoxyamphetamine. One was 4-methoxy-N,N-dimethylamphetamine, 4-MNNA. This material, made by the reductive amination of 4-methoxyphenylacetone with dimethylamine, was a colorless oil, which distilled at 70-85 !C at 0.3 mm/Hg. The corresponding 2-methoxy-N,N-dimethylamphetamine was similarly made. 2-MNNA was also a colorless oil and had the same bp. Both of them were fluorinated with 18F labelled acetyl hypofluorite (3% and 6% yields respectively) but neither of them was pursued any further in the search for a brain blood flow indicator.
131 METHYL-MMDA-2; 2-METHOXY-N-METHYL-4,5-METHYLENEDIOXYAMPHETAMINE
SYNTHESIS: A suspension of 17.4 g electrolytic elemental iron in 100 g glacial acetic acid was heated on the steam-bath until there were the first signs of bubbling and reaction, about 60 !C. There was then added, in small portions, a suspension of 9.2 g 1-(2-methoxy-4,5-methylenedioxyphenyl)-2-nitropropene (see under MMDA-2 for its preparation) in 40 g warm glacial acetic acid. The reaction was extremely exothermic. After the color had lightened as much as possible, there was added an additional quantity of iron sufficient to completely discharge the residual yellow color.
Pihkal Page 114