Carl Friedrich Gauss, Titan of Science_A Study of His Life and Work

Home > Other > Carl Friedrich Gauss, Titan of Science_A Study of His Life and Work > Page 56
Carl Friedrich Gauss, Titan of Science_A Study of His Life and Work Page 56

by G. Waldo Dunnington


  Cox, D.A. 1985 Gauss and the arithmetic-geometric mean. Notices of the American Mathematical Society 32 (2), 147–151.

  Coxeter, H.S.M. 1977 Gauss as a geometer, Historia Mathematica 4,4, 379–396.

  Darrigol, O. 2000 Electrodynamics from Ampère to Einstein, Oxford University Press, Oxford.

  De Moivre A. 1730 Miscellanea analytica de seriebus et quadraturis, London.

  Dick, W. R. 1992 Otto Struve tiber Carl Friedrich Gauss. Mitteilungen der Gauss-Gesellschaft, Göttingen, 29, 43–51.

  Dick, W. R. 1993 Martin Bartels als Lehrer von Carl Friedrich Gauss, Mitteilungen der Gauss-Gesellschaft, Göttingen, 30, 59–62.

  Dieudonne, J. 1962 L’oeuvre mathematique de C. F. Gauss, Paris, Conférence du Palais de la Découverte D. 79.

  Dieudonné, J. 1978 Carl Friedrich Gauss: a bicentenary. Southeast Asian Bulletin of Mathematics 2,2, 61–70.

  Dombrowski, p. 1979 150 Years after Gauss’ Disquisitiones generales circa superficies curvas, astérisque, 62 (with the original text of Gauss and an English translation by A. Hiltebeitel and J. Morehead).

  Dutka, J. 1996 On Gauss’ priority in the discovery of the method of least squares, Archive for History of Exact Sciences 49,4, 355–370.

  Eisenstein, G. 1844 Geometrischer Beweis des Fundamentaltheorems für die quadratischen Reste, Journal für die reine und angewandte Mathematik 28, 246–248, in Mathematische Werke, 1975, 1, 164–166.

  Eisenstein, G. 1847 Genaue Untersuchungen der unendlichen Doppelproducte, Journal für die reine und angewandte Mathematik 35, 153–247, in Mathematische Werke, 1975, 1, 357–478.

  Epple, M. 1999 Geometric aspects in the development of knot theory, I.M. James (ed.). History of topology, North-Holland, 301–357.

  Euler, L. 1748 Introductio in analysin infinitorum, in Opera Omnia, series 1, vols. 8–10.

  Euler, L. 1752/53 De numeris, qui sunt aggregata duorum quadratorum, Novi Comm. Acad. Petrop. 4, 3–40 in Opera Omnia, series 1, 2, 295–327.

  Euler, L. 1768 Institutiones Calculi integralis, I, in Opera Omnia, series 1, 11.

  Fermat, p. 1659 Letter to Carcavi, Oeuvres, II, 431–436.

  Festschrift zum 200, Geburtstag von Carl Friedrich Gauss, Mitteilungen der Gauss-Gesellschaft, Göttingen 14, Göttingen, Verlag Erich Goltze, 1977.

  Forbes, E.G. 1978 The astronomical work of Carl Friedrich Gauss (1777–1855), Historia Mathematica 5,2, 167–181.

  Fuchs, L.I. 1863 Über den Perioden, welche aus den Wurzeln der Gleichung ωn = 1 gebildet sind, wenn n eine zusammengesetze Zahl ist. Journal für die reine und angewandte Mathematik 61, 374–386, in Gesammelte Mathematische Werke, 1, 1904, 53–67.

  Fuchs, W. 1972 Das arithmetisch-geometrische Mittel in den Untersuchungen von Carl Friedrich Gauss. Mitteilungen der Gauss-Gesellschaft, Göttingen 9, 14–38.

  Fuchs, W. 1978 Die Leiste-Notizen des jungen Gauss. Mitteilungen der Gauss-Gesellschaft, Göttingen 15, 19–38.

  Fuchs, W. 1980, 1981, 1982 Zur Lehre von den Kongruenzen bei C. F. Gauss I, II, III, Mitteilungen der Gauss-Gesellschaft, Göttingen 17, 14–29; 18, 49–62; 19, 63–78.

  Garland, G. D. 1979 The contributions of Carl Friedrich Gauss to geomagnetism, Historia Mathematica 6,1, 5–29.

  Geppert, H. 1927 Bestimmung der Anziehung eines elliptischen Ringes: Nachlass zur Theorie des Arithmetischen-Geometrischen Mittels und der Modulfunktion von Carl Friedrich Gauss, Ostwald Klassiker 225, Leipzig.

  Gilain, C. 1991 Sur l’histoire du théorème fondamental de l’algèbre: théorie des équations et calcul intégral, Archive for History of Exact Sciences 42,2, 91–136.

  Goe, G. and van der Waerden, B. L. 1972 Comments on Miller’s ‘The myth of Gauss’s experiment on the Euclidean nature of physical space’, Isis 63, 345–348. With a reply by Arthur I. Miller, Isis 65 (1974), 83–87.

  Gray, J.J. 1984 A commentary on Gauss’s mathematical diary, 1796–1814, with an English translation, Expositiones Mathematicae 2, 97–130 (reproduced with minor alterations in this volume).

  Gray, J.J. 2000 Linear differential equations and group theory from Riemann to Poincaré, Birkhäuser, Boston and Basel, second edition with three new appendices and other additional material.

  Hall, T. 1970 Carl Friedrich Gauss: A Biography. Translated from the Swedish by Alfred Froderberg. Cambridge, MA, MIT Press.

  Ireland, K. and Rosen, M. 1982 A Classical Introduction to Modern Number Theory, Springer Verlag, New York and Berlin.

  Ivory, J. 1798 A new series for the rectification of the ellipsis; together with some observations on the evolution of the formula (a2 + b2 – 2ab cosϕ)n. Trans Royal Soc. Edinburgh 4, part II, 177–190.

  Johnsen, K. 1982 Bemerkungen zu einer Tagebuchnotiz von Carl Friedrich Gauss. Historia Mathematica 9,2, 191–194.

  Johnsen, K. 1984 Zum Beweis von C. F. Gauss für die Irreduzibilität des p-ten Kreisteilungspolynoms, Historia Mathematica 11,2, 131–141.

  Johnsen, K. 1986 Remarks to the third entry in Gauss’ diary, Historia Mathematica 13,2, 168–169.

  Khinchin, A. Ya. 1964 Continued Fractions, tr. H. Eagle, University of Chicago Press, Chicago and London.

  Kummer, E.E. 1856 Theorie der idealen Primfaktoren der complexen Zahlen, welche aus den Wurzeln der Gleichung ωn = 1 gebildet sind, wenn n eine zusammengesetze Zahl ist, Abh. der Wissenschaften zu Berlin, Math. Abt, 1–47 in Coll. Papers, I, 583–629.

  Lambert, J.H. 1776 Einige Anmerkungen tiber die Kirchenrechnung, Astron, Jahrbuch flir das Jahr 1778, Berlin, 210.

  Laplace, P.S. 1793 Sur quelques points du Système du monde, Mémoire de l’Académie royale des Sciences de Paris, in Oeuvres Complètes, XI, 477–558.

  Laubenbacher, R. and Pengelley, D. 1994 Eisenstein’s misunderstood geometric proof of the quadratic reciprocity theorem, College Mathematics Journal 25, 29–34.

  May, K.O. 1972 Biography of Gauss in Dictionary of Scientific Biography (New York 1970–1990) vol. 5, 298–315.

  Merzbach, U. 1981 An early version of Gauss’s Disquisitiones Arithmeticae, Mathematical perspectives, J. Dauben (ed.) 167–177, Academic Press, New York.

  Merzbach, Uta 1984 C. Carl Friedrich Gauss: a Bibliography. Wilmington, DE: Scholarly Resources.

  Miller, A. I. 1972 The myth of Gauss’ experiment on the Euclidean nature of physical space, Isis 63, 345–348.

  Monna, A. F. (ed.) 1978 Carl Friedrich Gauss 1777–1855, Four Lectures on His Life and Work. Utrecht, Rijksuniversiteit Utrecht, Mathematical Institute.

  Müürsepp, p. 1977 Gauss’ letter to Fuss of 4 April 1803, Historia Mathematica 4,1, 37–41.

  Müürsepp, p. 1978 Gauss and Tartu University, Historia Mathematica 5,4, 455–459.

  Nash, C. 1999 Topology and physics: a historical essay, I.M. James (ed.). History of topology, North-Holland, 359–415.

  Neumann, O. 1981 ed. Mathematisches Tagebuch, 1796–1814, With a historical introduction by Kurt-R. Biermann, translated from the Latin by Elisabeth Schuhmann, with notes by Hans Wussing. Third edition. Ostwalds Klassiker der Exakten Wissenschaften, 256, Leipzig, Akademische Verlagsgesellschaft Geest & Portig K.-G.

  Newton, I. 1676 Epistola Prior in The Correspondence of Isaac Newton, II 32–41, Cambridge University Press, 1959.

  O’Hara, J.G. 1983 Gauss and the Royal Society: the reception of his ideas on magnetism in Britain (1832–1842), Notes and Records of the Royal Society of London 38 (1), 17–78.

  Ore, Ø. 1971 Abel, Dictionary of Scientific Biography, I, 11–18, Scribner’s, New York.

  Pasch, M. 1882 Vorlesungen über neuere Geometric, Teubner, Leipzig.

  Reich, K. 1977 Carl Friedrich Gauss 1777/1977, Munich, Moos.

  Reich, K. 1998 Gauss’ Theoria motus: Entstehung, Quellen, Rezeption. Mitteilungen der Gauss-Gesellschaft, Göttingen No. 35, 3–15.

  Reichardt, H. 1976 Gauss und die nicht-euklidische Geometric, Teubner, Leipzig.

  Reichardt, H. 1983 Gauss, in H. Wussing and W. Arnold (eds.), Biographien bedeutender Mathematiker, Berlin.r />
  Reichardt, H. ed. 1957 C. F. Gauss Gedenkband anlasslich des 100, Todestages am 25, Februar 1955, Leipzig.

  Rowe, D.E. 1988 Gauss, Dirichlet and the Law of Biquadratic Reciprocity, The Mathematical Intelligencer 10, 13–26.

  Rüdiger, T. 1994 Mathematics in Göttingen (1737–1866), The Mathematical Intelligencer 16,4, 50–60.

  Schaaf, W.L. 1964 Carl Friedrich Gauss, Prince of Mathematicians. Immortals of Science series. New York, Franklin Watts.

  Schlesinger, L. 1917 Über Gauss’s Arbeiten zur Funktionentheorie, Gauss’s Werke, X.2.

  Schneider, I. 1981a Carl Friedrich Gauβ (1777–1855) Arbeiten im Rahmender Wahrscheinlichkeitsrechnung: Methode der kleinsten Quadrate und Versicherungswesen, in Schneider (ed.) [1981], pp. 143–172.

  Schneider, I. 1981b Herausragende Einzelleistungen: Kreisteilungsgleichung, Fundamentalsatz der Algebra und Konvergenzfragen, pp. 37–63 (see Schneider, [1981a]).

  Schneider, I. 1990 Gauss’ Contributions to Probability Theory, in: M. Behara (ed.). Symposia Gaussiana, Series A: Mathematics and Theoretical Physics, Vol. I, Berlin-Toronto-Sao Paulo, pp. 72–84.

  Schneider, Ivo (ed.) 1981 Carl Friedrich Gauβ (1777–1855) Sammelband von Beitragen zum 200, Geburtstag von C F Gauss, Minerva Publikation, München.

  Scholz, E. 1992 Gauss und die Begründung der “höheren” Geodasie, S.S. Demidov, M. Folkerts, D.E. Rowe, C.J. Scriba, (eds.) Amphora, Birkhäuser Verlag, Basel, Boston and Berlin, 631–648.

  Schuhmann, E. 1976 Vicimus GEGAN, Interpretationsvarianten zu einer Tagebuchnotiz von C.F. Gauss, Naturwiss. Tech. Medezin. 13,2, 17–20.

  Sheynin, O. 1994 C.F. Gauss and geodetic observations. Archive for History of Exact Sciences 46,3, 253–283.

  Sheynin, O. 1995 Helmert’s work in the theory of errors, Archive for History of Exact Sciences 49,1, 73–104.

  Sheynin, O.B. 1979 C.F. Gauss and the theory of errors, Archive for History of Exact Sciences, 20,1, 21–72.

  Sprott,D.A. 1978 Gauss’s contribution to statistics, Historia Mathematica 5,2, 183–203.

  Stäckel, p. 1917 Gauss als Geometer, in Gauss Werke, X.2, Abh. 4, separately paginated.

  Stewart, G.W. 1995 Gauss, statistics, and Gaussian elimination, J. Comput Graph. Statist. 4 (1), 1–11.

  Stigler, S.M. 1977 An attack on Gauss, published by Legendre in 1820, Historia Mathematica 4,1, 31–35.

  Stigler, S.M. 1981 Gauss and the invention of least squares, Annals of Statistics. 9 (3), 465–474.

  Stigler, S.M. 1986 The History of Statistics. The Measurement of Uncertainty before 1900, Cambridge, Mass.-London.

  Stirling, J. 1730–57 Methodus Differentialis, etc. London.

  Szénassy, B. 1980 Remarks on Gauss’s work on non-Euclidean geometry (Hungarian), Mat. Lapok 28 1–3, 133–140.

  Waltershausen, W.S. von 1966 Gauss, a Memorial translated from the German by Helen W Gauss (Colorado Springs, Colorado).

  Waltershausen, W.S. von 2000 Gesprochen auf der Terrasse der Sternwarte an Gauss oflfenem Sarge (Feb. 26, 1855). Transcribed by Stefan Kramer. Mitteilungen der Gauss-Gesellschaft, Göttingen No. 37, 101–103.

  Waterhouse, WC. 1979 Gauss on infinity, Historia Mathematica 6,4, 430–436.

  Waterhouse, W.C. 1986 A neglected note showing Gauss at work, Historia Mathematica 13,2, 147–156.

  Waterhouse, W.C. 1990 Gauss’s first argument for least squares. Archive for History of Exact Sciences 41,1, 41–52.

  Waterhouse, W.C. 1994 A counterexample for Germain, American Mathematical Monthly 101, 140–150.

  Watson, G.N. 1962 Theory of Bessel Functions, 2nd ed. Cambridge University Press, London.

  Weil, A. 1974 Two lectures on number theory, past and present, Enseignement Mathematique, 20, 87–110, in Oeuvres scientifiques, III, 279–303, Springer Verlag, New York.

  Weil, A. 1976 Review of Mathematische Werke by Gotthold Eisenstein, Chelsea, New York, in Bulletin of the American Mathematical Society 82,5, 658–663, in Oeuvres scientifiques. III, 398–403, Springer Verlag, New York.

  Worbs, E. 1955 Carl Friedrich Gauss Ein Lebensbild. Leipzig, Koehler & Amelang.

  Wussing, H. 1976 Carl Friedrich Gauss. (2nd ed.) Biographien Hervorragender Naturwiss. Tech. Medezin. 15, Leipzig, Teubner.

  Wussing, H. 1999 Implicit group theory in the domain of number theory, especially Gauss and the group theory in his Disquisitiones arithmeticae (1801), in Circe Mary Silva da Silva (ed), III Seminário national de história da matemática, Brasil, 114–125.

  Zormbala, K. 1996 Gauss and the definition of the plane concept in Euclidean elementary geometry, Historia Mathematica 23,4, 418–436.

  [Index omitted.]

  Notes

  [←1]

  I am grateful to Menso Folkerts for his expert opinion on the generally high quality of Dunnington’s account of German history, which is largely endorsed by Bühler in his more recent book.

  [←2]

  I am very happy to acknowledge here the contributions that were sent in by many members of the list on history of mathematics maintained by Julio Gonzalez Cabillon, and to thank him in particular for the way he has so expertly and convivially managed his valuable task.

  [←3]

  Renowned theologian and Orientalist who was a son-in-law of Gauss.

  [←4]

  The name is also common in Württemberg, where it may have no connection with the Hanoverian branch.

  [←5]

  Destroyed in an air raid October 15, 1944,

  [←6]

  Remer’s Arithmetica or Hemeling’s Arithmetisches kleines Rechenbuch.

  [←7]

  Bartels was born in Brunswick on August 12, 1769, and entered the Collegium Carolinum in 1788; he became professor of mathematics at Reichenau in Switzerland, later at the University of Kasan in Russia, and finally at Dorpat, where he died on December 19, 1836, while retired on a pension. His daughter married the astronomer Otto Struve. He published essays on the theory of functions (1822), an essay on the analytic geometry of space in the St. Petersburg Academy Reports (1831), lectures on mathematical analysis (Vol. I, 1833). Besides this, he translated Bailly’s History of Astronomy into German.

  [←8]

  Eberhard August Wilhelm Zimmermann (1743–1815) had been full professor of mathematics, physics, and natural history at the Collegium Carolinum since 1766, He had resumed his lectures in 1789 after two years’ traveling in England, France, and Italy. This was a short time after Bartels had entered the Carolineum. In 1786 Zimmermann received the title of councilor and in 1796 was raised to the nobility by the emperor; in 1802 he was appointed privy councilor by the Duke, Carl Wilhelm Ferdinand. Zimmermann was highly respected as a scholar and writer, and stood well in the Duke’s home. He was a man of attractive nature, lovable, possessed of insight and great humanity.

  [←9]

  Schulze, Sammlung von Tafeln.

  [←10]

  Duke Friedrich Wilhelm fell at Quatre Bras on June 16, 1815.

  [←11]

  Heinrich Mack published two of Gauss’ letters to Zimmermann; these are dated November 22, 1797, and December 24, 1797. P. Zimmermann published three other of Gauss’ letters to Zimmermann, dated October 19, 1796, May 20, 1796, and November 16, 1803, in the Grimme Natalis Co. Braunschweiger Monatsschrift (1921) , pp. 753 et seq.

  [←12]

  R. S. Woodward, “The Century’s Progress in Applied Mathematics,” Bulletin of the American Mathematical Society, 2d series, Vol. VI, No. 4 (N. Y, 1900), pp. 149–50,

  [←13]

  Heyne was born on September 25, 1729, and died on July 14, 1812, The biography of him by Arnold Heeren, the historian, his son-in-law, appeared in 1813, For a good impersonal account see that by Friedrich Leo (1901).

  [←14]

  Abraham Gotthelf Kästner was born at Leipzig on September 27, 1719, became docent (1739), and professor (1746) of mathematics at the university there. He went to Göttingen in 1756 as professor and died there June 30, 1800, His Geschichte
der Mathematik (4 vols.; Göttingen, 1796–1800) was the first work on this subject by a prominent author. He wrote also on equations, geometry, hydrodynamics, and various other branches. His works and memoirs are by no means brilliant and his career, as a whole, was rather mediocre.

  [←15]

  On the back of the monument’s base was a seventeen-pointed star, because the stonemason Howaldt said that a polygon of seventeen sides would be mistaken by everyone for a circle.

  This reminds one of the tomb of Archimedes, which bore the figure of a sphere inscribed in a cylinder. Cicero found the tomb buried under rubbish when he was in Syracuse. Jacques Bernoulli, from his study of the logarithmic spiral r = aθ, directed that this curve should be engraved on his tombstone with the words eadem mutata resurgo, and we are told that the visitor to the cloisters at Basel may still see the rude attempt of the stonecutter to carry out his wish.

  Gauss’ companion, Bolyai, said that no monument should stand over his grave, only an apple tree, in memory of the three apples: the two of Eve and Paris, which made hell out of earth, and that of Sir Isaac Newton, which elevated the earth again into the circle of heavenly bodies.

  [←16]

  The Russian mentioned in this letter was Count Murawjeff, envoy in Nether-Saxony.

  [←17]

  Franz Karl von Stamford’ (1742–1807) was successively an officer in the Brunswick, Prussian, and Dutch Service. He wrote An Attempt to Present the Fundamentals of the Differential and Integral Calculus, Without Introducing the Idea of Infinitesimals (Berlin, 1784). He received an ambassador’s post in Berlin and Gauss’ hopes again were not fulfilled. Several other disappointments of this kind occurred as to similar offers.

 

‹ Prev