Farmer peer pressure, in combination with recently changed government policies, is reducing stocking rates and improving pasture conditions. In inland parts of South Australia where the government owns land fit for pastoralism and leases it to farmers on 42-year leases, an agency called the Pastoral Board assesses the land’s condition every 14 years, reduces the permissible stocking rate if the vegetation’s condition is not improving, and revokes the lease if it decides that the farmer/tenant was managing the property unsatisfactorily. Closer to the coast, land tends to be owned outright (as freehold) or under perpetual lease, so that such direct governmental control is not possible, but there is still indirect control enforced in two ways. By law, landowners or leaseholders still bear a “duty-of-care” obligation to prevent land degradation. The first stage of enforcement involves local farmer boards that monitor degradation and apply peer pressure to try to achieve compliance. The second stage depends on soil conservators who can intervene if the local board is not effective. Bill McIntosh related to me four cases in which local boards or soil conservators in his area ordered farmers to reduce sheep stocking rates, or actually confiscated the property when the farmer did not obey.
Among Australia’s many innovative private initiatives to address environmental problems are several that I encountered while visiting a former sheep and farm property of nearly 1,000 square miles near the Murray River, called Calperum Station. First leased for grazing in 1851, it fell victim to the usual panoply of Australian environmental problems: deforestation, foxes, land clearance by chaining and burning, overirrigation, overstocking, rabbits, salinization, weeds, wind erosion, and so on. In 1993 it was bought by the Australian Commonwealth Government and the Chicago Zoological Society, the latter (despite being U.S.-based) already attracted by Australia’s pioneering efforts in developing ecologically sustainable land practices. For some years after that purchase, government managers applied top-down control and gave orders to local community volunteers, who became increasingly frustrated, until in 1998 control was turned over to the private Australian Landscape Trust mobilizing 400 local volunteers for bottom-up community management. The trust is funded in large degree by Australia’s largest private philanthropic organization, The Potter Foundation, which is expressly concerned with reversing the degradation of Australia’s farmland.
Under the trust’s management, local volunteers at Calperum threw themselves into whatever projects appealed to each volunteer’s own interest. By thus enlisting volunteers, this private initiative has been able to accomplish far more than would have been possible with the limited available government funds alone. Volunteers trained at Calperum have then gone on to use those skills to undertake other conservation projects elsewhere. Among the projects that I saw, one volunteer was devoting herself to a small endangered kangaroo species whose population she was trying to restore; another volunteer preferred to poison foxes, one of the area’s most damaging introduced pest species; and still other volunteers were attacking the ubiquitous problem of rabbits, seeking ways to control introduced carp in the Murray River, perfecting a strategy for non-chemical control of insect pests of citrus trees, restoring lakes that had become sterile, revegetating overgrazed land, and developing markets for growing and selling local wildflowers and plants controlling erosion. These efforts deserve a prize for imagination and enthusiasm. Literally tens of thousands of other such private initiatives are operating around Australia: for instance, another organization that also grew in part out of The Potter Foundation’s Potter Farmland Plan, called Landcare, is helping 15,000 individual farmers wanting to help themselves to pass on their farms in decent condition to their children.
Complementing these imaginative private initiatives are government initiatives that include a radical rethinking of Australian agriculture, in response to growing awareness of the seriousness of Australia’s problems. It is too early to guess whether any of these radical plans will be adopted, but the fact that salaried government employees are being permitted and even paid to develop them is remarkable. The proposals are not coming from idealistic bird-loving environmentalists but from hard-nosed economists, who are asking themselves: would Australia be better off economically without much of its present agricultural enterprise?
The background to this rethinking is the realization that only tiny areas of Australian land currently being used for agriculture are productive and suitable for sustained agricultural operations. While 60% of Australia’s land area and 80% of its human water use are dedicated to agriculture, the value of agriculture relative to other sectors of the Australian economy has been shrinking to the point where it now contributes less than 3% of the gross national product. That’s a huge allocation of land and scarce water to an enterprise of such low value. Furthermore, it is astonishing to realize that over 99% of that agricultural land makes little or no positive contribution to Australia’s economy. It turns out that about 80% of Australia’s agricultural profits are derived from less than 0.8% of its agricultural land, virtually all of it in the southwestern corner, on the south coast around Adelaide, in the southeastern corner, and in eastern Queensland. Those are the few areas favored by volcanic or recently uplifted soils, reliable winter rains, or both. Most of Australia’s remaining agriculture is in effect a mining operation that does not add to Australia’s wealth but merely converts environmental capital of soil and native vegetation irreversibly into cash, with the help of indirect government subsidies in the forms of below-cost water, tax concessions, and free telephone linkups and other infrastructure. Is it a good use of Australian taxpayers’ money to subsidize so much unprofitable or destructive land use?
Even from the narrowest point of view, some Australian agriculture is uneconomic to the individual consumer, who can buy its products (such as orange juice concentrate and pork) more cheaply as imports from overseas than as domestic produce. Much agriculture is also uneconomic to the individual farmer, as measured by what is termed “profit at full equity.” That is, if one counts among a farm’s expenses not only its cash expenditures but also the value of the farmer’s labor, two-thirds of Australia’s agricultural land (mainly land used for raising sheep and beef cattle) operates at a net loss to the farmer.
For instance, consider Australian pastoralists raising sheep for their wool. On the average, pastoralists’ farm income is lower than the national minimum wage, and they are accumulating debts. The farm’s capital plant of its buildings and fences is running down because the farm doesn’t yield enough money to maintain the plant in good condition. Nor does wool yield enough profit to pay the interest costs on the farm’s mortgage. The means by which the average wool-grower survives economically are through non-farm income, earned by holding a second job as a nurse or in a store, operating a bed-and-breakfast, or other ways. In effect, those second jobs, plus the farmers’ willingness to work on their farms for little or no pay, are subsidizing their own money-losing farm operations. Many in the current generation of farmers pursue the profession because they grew up to admire the rural life, even though they could earn more money doing something else. In Australia as in Montana, the children of the current generation of farmers are unlikely to make that same choice when they will be facing the decision whether they want to take over the family farm from their parents. Only 29% of current Australian farmers expect that their children will run the farm.
That’s the economic value of much Australian farming to the individual consumer and the individual farmer. What about its value to Australia as a whole? For any given piece of the farming enterprise, one has to take into account a broadened view of its costs to the entire economy, as well as its benefits. One big piece of those broadened costs is government support to farmers through means such as tax subsidies and expenditures for drought assistance, research, advising, and agricultural extension services. Those government expenditures eat up about one-third of Australian agriculture’s nominal net profits. Another big piece of those broadened costs is the losses that agricul
ture imposes on other segments of the Australian economy. In effect, agricultural uses of land compete with other potential uses of the same land, and using one piece of land for agriculture may damage the value of another piece of land for tourism, forestry, fisheries, recreation, or even for agriculture itself. For instance, soil runoff caused by land clearance for agriculture is damaging and locally killing the Great Barrier Reef, one of Australia’s major tourist attractions, but tourism is already more important to Australia than agriculture as a source of foreign-exchange earnings. Or suppose one wheat farmer on uphill land can make a profit for a few years by growing irrigated wheat that causes massive salinization of larger properties lying downhill, ruining those properties in perpetuity. In those cases the farmer clearing land in the reef’s watershed, or operating the uphill farm, may show a profit to himself as a result of his activities, but Australia as a whole shows a loss.
Another case that has come in for much recent discussion involves industrial-scale cotton-growing in southern Queensland and in northern New South Wales, on the upper reaches of tributaries of the Darling River (flowing down through agricultural districts of southern New South Wales and South Australia) and of the Diamantina River (flowing down into the Lake Eyre Basin). In a narrow sense, cotton is Australia’s second most profitable agricultural export, after wheat. But cotton-growing depends on irrigation water provided at low cost or no cost by the government. In addition, all major cotton-growing areas pollute the water with their heavy applications of pesticides, herbicides, defoliants, and high-phosphorus and high-nitrogen fertilizers (causing algal blooms). Those pollutants even include DDT and its metabolites, last used about 25 years ago but still persisting in the environment because they resist breakdown. In the downstream reaches of those polluted rivers are wheat and cattle growers who appeal to a high-value niche market by raising wheat and beef without adding their own chemicals. They have been protesting vigorously, because their ability to sell their supposedly chemical-free produce is being undermined by those side effects of the cotton industry. Thus, while growing cotton unquestionably brings profits to the owners of the cotton agribusinesses, one would have to calculate indirect costs, such as those of subsidized water and damage to other agricultural sectors, if one wanted to evaluate whether cotton produces a gain or a loss to Australia as a whole.
The remaining example considers Australia’s agricultural production of the greenhouse gases carbon dioxide and methane. That’s an especially serious problem for Australia, because global warming (thought to result in large degree from greenhouse gases) is breaking down the pattern of reliable winter rains that turned wheat grown in southwestern Australia’s wheat belt into Australia’s single most valuable agricultural export. The carbon dioxide emissions from Australian agriculture exceed those produced by motor vehicles and all the rest of the transport industry. Even worse are cows, whose digestion produces methane, 20 times more potent than carbon dioxide in causing global warming. The simplest way for Australia to fulfill its stated commitment to reduce its greenhouse gas emissions would be to eliminate its cattle!
While that and other radical suggestions have been put forward, there are currently no signs of their being adopted soon. It would be a “first” for the modern world if a government voluntarily decided to phase out much of its agricultural enterprise, in anticipation of future problems, before being forced in desperation to do so. Nevertheless, even the mere existence of these suggestions raises a larger point. Australia illustrates in extreme form the exponentially accelerating horse race in which the world now finds itself. (“Accelerating” means going faster and faster; “exponentially accelerating” means accelerating in the manner of a nuclear chain reaction, twice as fast and then 4, 8, 16, 32 ... times faster after equal time intervals.) On the one hand, the development of environmental problems in Australia, as in the whole world, is accelerating exponentially. On the other hand, the development of public environmental concern, and of private and governmental countermeasures, is also accelerating exponentially. Which horse will win the race? Many readers of this book are young enough, and will live long enough, to see the outcome.
PART FOUR
PRACTICAL LESSONS
CHAPTER 14
Why Do Some Societies Make Disastrous Decisions?
Road map for success ■ Failure to anticipate ■ Failure to perceive ■ Rational bad behavior ■ Disastrous values ■ Other irrational failures ■ Unsuccessful solutions ■ Signs of hope ■
Education is a process involving two sets of participants who supposedly play different roles: teachers who impart knowledge to students, and students who absorb knowledge from teachers. In fact, as every open-minded teacher discovers, education is also about students imparting knowledge to their teachers, by challenging the teachers’ assumptions and by asking questions that the teachers hadn’t previously thought of. I recently repeated that discovery when I taught a course, on how societies cope with environmental problems, to highly motivated undergraduates at my institution, the University of California at Los Angeles (UCLA). In effect, the course was a trial run-through of this book’s material, at a time when I had drafted some chapters, was planning other chapters, and could still make extensive changes.
My first lecture after the class’s introductory meeting was on the collapse of Easter Island society, the subject of this book’s Chapter 2. In the class discussion after I had finished my presentation, the apparently simple question that most puzzled my students was one whose actual complexity hadn’t sunk into me before: how on earth could a society make such an obviously disastrous decision as to cut down all the trees on which it depended? One of the students asked what I thought the islander who cut down the last palm tree said as he was doing it. For every other society that I treated in subsequent lectures, my students raised essentially the same question. They also asked the related question: how often did people wreak ecological damage intentionally, or at least while aware of the likely consequences? How often did people instead do it without meaning to, or out of ignorance? My students wondered whether—if there are still people left alive a hundred years from now—those people of the next century will be as astonished about our blindness today as we are about the blindness of the Easter Islanders.
This question of why societies end up destroying themselves through disastrous decisions astonishes not only my UCLA undergraduates but also professional historians and archaeologists. For example, perhaps the most cited book on societal collapses is The Collapse of Complex Societies, by the archaeologist Joseph Tainter. In assessing competing explanations for ancient collapses, Tainter remained skeptical of even the possibility that they might have been due to depletion of environmental resources, because that outcome seemed a priori so unlikely to him. Here is his reasoning: “One supposition of this view must be that these societies sit by and watch the encroaching weakness without taking corrective actions. Here is a major difficulty. Complex societies are characterized by centralized decision-making, high information flow, great coordination of parts, formal channels of command, and pooling of resources. Much of this structure seems to have the capability, if not the designed purpose, of countering fluctuations and deficiencies in productivity. With their administrative structure, and capacity to allocate both labor and resources, dealing with adverse environmental conditions may be one of the things that complex societies do best (see, for example, Isbell [1978]). It is curious that they would collapse when faced with precisely those conditions they are equipped to circumvent.... As it becomes apparent to the members or administrators of a complex society that a resource base is deteriorating, it seems most reasonable to assume that some rational steps are taken toward a resolution. The alternative assumption—of idleness in the face of disaster—requires a leap of faith at which we may rightly hesitate.”
That is, Tainter’s reasoning suggested to him that complex societies are not likely to allow themselves to collapse through failure to manage their environmental resourc
es. Yet it is clear from all the cases discussed in this book that precisely such a failure has happened repeatedly. How did so many societies make such bad mistakes?
My UCLA undergraduates, and Joseph Tainter as well, have identified a baffling phenomenon: namely, failures of group decision-making on the part of whole societies or other groups. That problem is of course related to the problem of failures of individual decision-making. Individuals, too, make bad decisions: they enter bad marriages, they make bad investments and career choices, their businesses fail, and so on. But some additional factors enter into failures of group decision-making, such as conflicts of interest among members of the group, and group dynamics. This is obviously a complex subject to which there would not be a single answer fitting all situations.
What I’m going to propose instead is a road map of factors contributing to failures of group decision-making. I’ll divide the factors into a fuzzily delineated sequence of four categories. First of all, a group may fail to anticipate a problem before the problem actually arrives. Second, when the problem does arrive, the group may fail to perceive it. Then, after they perceive it, they may fail even to try to solve it. Finally, they may try to solve it but may not succeed. While all this discussion of reasons for failure and societal collapses may seem depressing, the flip side is a heartening subject: namely, successful decision-making. Perhaps if we understood the reasons why groups often make bad decisions, we could use that knowledge as a checklist to guide groups to make good decisions.
Collapse Page 55