by Seth Shulman
Curtiss even got his first taste of air travel by making an ascent in one of Baldwin’s dirigibles in a pasture outside of Hammondsport. Theirs would be a lasting friendship. Ultimately, Baldwin would even move his operations to Hammondsport. He would make a total of thirteen airships outfitted with Curtiss motors in the years to come, including the first aircraft ever purchased by the U.S. military (aside from its abortive attempt to underwrite Langley’s efforts).
Soon virtually all dirigible balloons operating in the United States would be driven by Curtiss motors. First prize at the St. Louis exposition in 1904 was followed by a dramatic and awe-inspiring flight over Portland, Oregon, at the Lewis and Clark Exposition in the spring of 1905. As was increasingly his penchant, the hefty Baldwin remained on the ground, sending in his place a fearless—and much more lithe—teenager named Lincoln Beachey, a man who would eventually become the most famous flier of his generation.
The Portland flight was so successful that Beachey decided to set out on his own. On a beautiful June morning in 1906, with no notice or official authorization, nineteen-year-old Lincoln Beachey took off from a park in Washington, D.C., in a dirigible outfitted with a Curtiss engine. He would be the first aeronaut to grace the nation’s capital. He soared above the treetops, circled the Washington Monument, and then landed on the lawn of the White House, climbing out of the airship to meet an astonished first lady—Mrs. Edith Roosevelt—who interrupted a meeting to examine Beachey’s contraption for herself. Awestruck, Mrs. Roosevelt rightly pronounced Beachey’s stunt the most novel call ever made upon the White House and said she was sorry her husband Teddy was off giving a speech and not there to see it himself. With Mrs. Roosevelt’s blessing, Beachey got back in the ship and breezed his way over to the Capitol Building, circling the dome several times as lawmakers flooded out from a joint session of Congress onto the Capitol steps for the spectacle. Beachey handily landed the dirigible before the spellbound leaders and sauntered over to spend the next hour answering their numerous and animated questions.
There was no doubt that the times were changing. Curtiss would still occasionally call his flying customers cranks, but like the rest of the world, he couldn’t help but take the idea of air travel more seriously. Interest in flying moved further into the mainstream with the founding of the Aero Club of America in 1905. Scores of inventors around the world were actively trying to solve the puzzle of heavier-than-air flight. Their efforts would bring dramatic changes. And Curtiss would soon find himself in the center of it all.
How did the airplane come into being? Some inventions arrive at once, presenting themselves in a brilliant flash of insight. Curtiss’s invention of the motorcycle’s handlebar throttle is a small example. Still other developments occur by accident, often in the active pursuit of something else. Alexander Graham Bell, for instance, was working to improve the telegraph when he first stumbled on the concept of the variable resistance of electric current that would make the telephone possible.
The airplane, however, was an invention categorically unlike these fortuitous or accidental developments. On the contrary, it had been envisioned in rich detail for generations and was doubtless a mainstay of the imagination ever since humans first observed birds in flight. Leonardo da Vinci famously drew diagrams of flying machines as early as 1483 and some intellectual historians champion far earlier antecedents. The problem was making an airplane that would actually work. And the quest was a long one indeed.
Dreams and visions aside, the heavier-than-air flying machine was actively under development for a full century before the Wright brothers’ success at Kitty Hawk. In fits and starts, with contributions from many sources around the world—some scientists and engineers, some daredevil nonconformists—the airplane’s development moved incrementally forward.
Of course, these early efforts met with only limited success. Many pioneers displayed an incomplete understanding of aerodynamics. Others lacked a practical system of propulsion. Still other attempts at a working airplane led entire schools of researchers down blind alleys. Nonetheless, the standard engineering assessment that brands all these early efforts flatly as failures is a woeful misreading of history. Repeated and reinforced in scores of aviation texts and children’s history books alike, such a view does more than miss a crucial truth about the origin of the airplane. With it we willfully deceive ourselves about the way new technology evolves.
Like most other technologies—and in fact like so many of humanity’s great conceptual breakthroughs—the concept of the airplane percolated slowly, refined and distilled as many great minds grappled with different aspects of its deepening mysteries. In many ways, the airplane was like a difficult jigsaw puzzle; for it to succeed, many pieces had to be put together correctly. The puzzle would not be complete until its final piece was set in place. But many important victories would be achieved as seminal pieces came together along the way.
One extraordinary theoretical leap was achieved by Sir George Cayley, a British nobleman, who started his aeronautical investigations in 1796. Cayley was a gentleman scientist with a voracious and broad-ranging interest in the world around him. In his voluminous journal, he recorded all his measurements about the world around him, from the fact that crows flew 23 miles per hour on a calm day, to the observation that his thumbnail grew at a rate of exactly one-half inch in 100 days. He was the first to envision a practical airplane design as we know it today replete with fixed wings, a cruciform tail unit and a propulsion system. Perhaps even more important, Cayley deserves recognition as the father of modern aeronautics for his surprisingly sophisticated understanding of air resistance and the need to control an airborne craft along all its axes, now known as pitch, yaw, and roll.
A visionary who published his research and inspired many others to come, Cayley called the air “an uninterrupted navigable ocean that comes to the threshold of every man’s door.” At a time in the early nineteenth century when the view was nothing short of heretical, Cayley never doubted the viability of a heavier-than-air craft. As he put it in 1809, for instance, he was “perfectly confident” that someday people would transport themselves, their families, and their goods, “more securely by air than by water and with a velocity of from 20 to 100 miles per hour”—an audacious and startling prediction for a man of his day.
As important as his theories were, however, Cayley’s work went far beyond the theoretical. In 1853, from the hill behind Brompton Hall, his British estate, Cayley launched the world’s first full-scale glider capable of successfully carrying a passenger. Oddly enough, a half century before Kitty Hawk, Cayley’s reluctant coachman was the first person ever to fly in a heavier-than-air contraption, soaring for some nine hundred feet over the British countryside and becoming so terrified in the process that he tendered his resignation immediately upon landing.
In retrospect, it seems clear that all Cayley lacked to make a working airplane was a lightweight engine. He quickly realized that the steam engines of his day were too heavy to do the job. And, after some brief experimentation with several alternative propulsion systems, he reluctantly gave up hope of motorizing his craft, once again writing presciently that a much cheaper “gaslight” engine would likely be produced someday. Given Cayley’s precedent-setting place in history, decades before the internal combustion engine developed enough to be usable, that piece of the aeronautical puzzle would simply remain beyond his grasp.
Like Cayley, dozens of early aviation experimentalists played an indispensable role in amassing technical data about flight. Several of these, including Percy Pilcher in Britain, John Montgomery in California, and Otto Lilienthal in Germany, even lost their lives testing their designs.
Lilienthal’s experimental work was undoubtedly the most important. A professional engineer who manufactured steam boilers, Lilienthal was passionate about flying and undertook a systematic study of the lifting power of surfaces and the movement of the center of pressure when wings are placed at different angles—an important
step in understanding the stability of aircraft.
Often working after dark to avoid the opprobrium of his neighbors, Lilienthal recorded the results as he jumped repeatedly into the wind in the Rhinower Hills, six miles northwest of Berlin in hang gliders of his own design, soaring at times for more than one thousand feet. Based on his experiments, Lilienthal published detailed tables in 1889 calculating the lift of wings with different designs and camber, or pitch. Convinced that powered flight would one day be practical, Lilienthal successfully completed more than two thousand flights with his various gliders before he was killed in August 1896 when a sudden gust caused his glider to stall and crash to the ground.
Researchers like Lilienthal did not simply complete pieces of the airplane puzzle for themselves; they passed the information along to others. Before Lilienthal’s death, for instance, Samuel Pierpont Langley traveled to Germany to see Lilienthal’s gliders firsthand. And the Wright brothers used Lilienthal’s data extensively, especially in their earliest aeronautical research.
Some scientists were equally influential even though their expertise stood considerably afield from the engineering problem of how to build an airplane. One good example is the French naturalist Louis-Pierre Mouillard whose seminal 1881 work L’Empire de l’Aire carefully analyzes the wing structure and weight of bird species to systematically study how they fly. His seminal work influenced a generation of aviators. In fact, Langley attended an 1886 lecture by Mouillard and later credited it as the impetus for his decision to pursue aeronautical work in earnest. Similarly, the pioneering French inventor Clement Ader—one of the world’s very first to build a heavier-than-air flying machine—was so taken with Mouillard’s approach that he trekked through the wilds of Algeria in search of large vultures, luring the huge birds with slabs of meat to personally inspect the way they soared.
But for all the rich exchange of aeronautical information, no one during this period would match the efforts of Octave Chanute. His 1894 Progress in Flying Machines—still in print today—may well be the most important work in the history of aviation. It presents a panoramic picture of the emerging aviation field near the turn of the century, and was read by virtually all of the earliest aviation pioneers around the world at the turn of the century—including the Wright brothers.
Chanute’s book offered detailed and precise descriptions of the work of an extraordinary collection of no fewer than sixty-five inventors with glider or airplane designs as of 1894—from the path-breaking box-kite designs of Lawrence Hargrave in Sydney, Australia, to the rounded, birdlike gliders of the French ship’s captain Jean-Marie le Bris.
To anyone seeking to understand the origins and development of the airplane, then or now, the existence of Chanute’s community of researchers at the turn of the century is a source of wonder and fascinating technical information. These aviation pioneers whose work Chanute chronicles were often marginalized and subjected to ridicule. But they represented an emerging understanding of aeronautical engineering that was essential to the airplane’s development.
It is astonishing to remember that, even before the Wrights’ success at Kitty Hawk in December 1903, some seven stalwart experimenters (including Langley) each managed to build motorized, full-scale heavier-than-air flying machines, and get them into the air before witnesses for at least a hop. The list includes little-known names like the French engineer Félix du Temple de la Croix, Russian inventor Alexandr Fyodorovich Mozhaisky, and the Austrian piano maker Wilhelm Kress.
One member of this group, the expatriate American Hiram Maxim, famed for his invention of the machine gun, spent roughly $100,000 of his own fortune on a massive, four-ton flying machine at his estate in Kent, England. On July 12, 1894, Maxim briefly flew the gargantuan aircraft, powered by two hulking 180-horsepower steam engines that each turned a propeller nearly eighteen feet long. Maxim set the machine upon a steel rail and, in order to measure the machine’s lift, built a guardrail to prevent it from getting more than a few inches off the ground. But the machine had so much thrust that, with Maxim at the helm, it immediately rose high enough to break through the iron guardrail, twisted out of control, and crashed. Maxim was so unnerved by the experience that he soon abandoned the entire project.
Maxim never made a fully working aircraft. But his assessment in 1890 gives a clear sense of the way things stood in the field. As he put it, “I think I can assert that within a very few years someone—if not myself, somebody else—will have made a machine which can be guided through the air, will travel with considerable velocity, and will be sufficiently under control.”
After Baldwin’s wayward dirigible flight at the Dayton Fair, he invites the Wrights aboard the catwalk as thanks for their assistance. They eagerly accept the offer and reciprocate by inviting Baldwin and Curtiss back to their Dayton shop. The four aviation entrepreneurs strike up a natural conversation about the emerging field and talk late into the evening. They talk generally about the state of technological development in aviation. They talk about propeller design, a topic of considerable recent interest to Curtiss.
Curtiss is very much at home in the Wrights’ shop. With workbenches, tools, and bicycle rims hanging from the rafters, it is remarkably like his own in Hammondsport, only perhaps a bit more fastidiously kept. Curtiss himself bears such a resemblance to the Wrights he could almost pass as another Wright brother himself. And they share many features in background and temperament as well. All three ran bicycle shops. None of them attended college. All tend to be shy and reserved by nature, especially with strangers. Most strikingly, all three are expert at a hands-on kind of thinking—making adjustments and tinkering to improve their products. It is an indispensable trait in the young aeronautical field where so much still needs to be discovered by feel.
In hindsight, of course, it is equally notable how well their special talents complement one another. Curtiss excels at engine design whereas Orville will later acknowledge that the engine was always the weakest component of the original Wright Flyers. But despite Curtiss’s formal offer to collaborate with the Wrights by building them a special engine, history will dictate otherwise.
Curtiss’s offer to collaborate—and the Wrights’ prompt refusal—also highlights a dramatic difference between Curtiss and the Wright brothers. Despite his shyness, Curtiss is also open and candid; he loves nothing more than to bounce ideas back and forth with friends and colleagues. His inclination is always to work in a group and he thrives when exchanging his ideas with others.
By contrast, Wilbur and Orville Wright operate as a self-contained unit. Sons of a bishop in the United Brethren Church, they have been trained from an early age to be scrupulously truthful but, throughout their lives, they tend to be guarded and mistrustful of outsiders. Even though theirs is now a three-year-old invention, legally protected by a U.S. patent, the Wrights never consider taking their interested visitors to the nearby shed where their airplane sits hidden. It is a testament to how positively they feel toward Curtiss and Baldwin that they let the two see a picture of their airplane in flight that evening.
Sadly, much later, when relations between Curtiss and the Wrights become strained, Orville Wright will offer the baseless charge that the chance meeting in Dayton began a systematic effort by Curtiss to steal the Wrights’ technology. The visit couldn’t have helped but to encourage Curtiss about the potential of heavier-than-air flight, but the charges otherwise couldn’t be farther from the truth.
Curtiss’s open eagerness to engage the Wrights shows in his correspondence immediately following the visit and for some time afterward as well. When he returns to Hammondsport, Curtiss sends a warm and chatty letter to the Wrights offering details of his work on a new eight-cylinder motor and other exploits. “It may interest you to know,” he writes, clearly following up on an exchange in Dayton, “that we cut out some of the inner surface of the blades on the big propeller, so as to reduce the resistance and allow it to speed up, and it showed a remarkable improvement.” It is ha
rdly the correspondence of someone trying to surreptitiously appropriate the Wrights’ ideas.
Baldwin’s last day in Dayton is the most successful. To the delight of many spectators, he makes a dramatic flight above the city, traveling from one end of town to the other and back, and making a perfect landing in time to beat an automobile that tries to race the same distance along the city streets.
Baldwin thus adds his feat in Dayton to a remarkable string of airborne accomplishments. Now mostly forgotten, Baldwin dominated the air in the brief era of the dirigible. And he continued to entertain crowds with his aerial feats as the airplane blossomed, becoming the first person to hold a complete set of international licenses to pilot all three types of aircraft: balloon, dirigible, and airplane. But Baldwin’s moment in the limelight of aviation soon faded as his showman’s sensibility was eclipsed. Aerial exhibitions continued for many years to come, but a new generation of aviators like Curtiss had even more ambitious goals for the airplane.
FIVE
SKY DANCING
The age of the flying machine is not in the future.
It is with us now.
—ALEXANDER GRAHAM BELL, 1906