Unlocking the Sky

Home > Other > Unlocking the Sky > Page 11
Unlocking the Sky Page 11

by Seth Shulman


  Even beyond these logistical details, Bell has thought a good deal about the role he anticipates in the association. As he writes in his journal: “My special function, I think, is the coordination of the whole—the appreciation of the importance of the steps of progress and the encouragement of efforts in what seem to me to be advancing directions.”

  In mulling over Bell’s proposal, Curtiss tries not to let the romance of Beinn Bhreagh cloud his business sense.

  Is Bell close to inventing a flying machine? His tetrahedral kite-like gliders certainly seem strange, but it is hard to tell how they might fare with a motor attached. One question is the extent to which Bell’s dramatic earlier success with the telephone—success that brought him fame and fortune by the time he was thirty years old—relied on the special circumstances of his background.

  From the time of Bell’s birth in 1847, his father had been well established in Edinburgh teaching speech and elocution and beginning research on what he called a “visible speech” system: a means to represent with symbols all possible positions of the vocal organs and the sounds to which they corresponded. George Bernard Shaw, a family friend, would immortalize Bell’s father and his speech research as Professor Henry Higgins in the play Pygmalion (later adapted into the musical My Fair Lady).

  From the earliest age, Bell had been further influenced in his interest in speech and acoustics by the fact that his mother was nearly deaf and, even as a young boy, Bell, of all his family members, could best communicate with her. After studying at the University of London, it was only natural for him to become involved in teaching speech to deaf pupils. For the rest of his life Bell considered this his core profession and always identified himself as a teacher of the deaf.

  In 1871, when Bell was twenty-four years old, he moved with his parents from Edinburgh to Ontario, Canada, and then soon moved again, this time alone, to accept a professorship at the recently opened Boston University. There he introduced Helen Keller to her life-changing teacher, Anne Sullivan, a fact that would lead Keller to dedicate her autobiography to him. “Child as I was,” Keller would write, “I at once felt the tenderness and empathy which endeared Dr. Bell to so many hearts. That interview would be the door through which I should pass from darkness to light.”

  To be sure, by the time Bell set out on his telephone research, he had developed a remarkable and unusual constellation of talents, including a mastery of aspects of speech, music, acoustics, mechanics, and electricity. The big question for Curtiss is whether Bell can bring his many talents to bear effectively on the field of aeronautics.

  In this regard, Curtiss’s time in Nova Scotia has shown him that there is much more to Bell’s capacious repertoire than the telephone.

  In his Georgetown lab, for instance, Bell developed the graphophone, a machine that used cylinders of hardened beeswax to replay voice recordings. Edison bought the rights and used Bell’s work to help develop his phonograph. Among many other lesser-known accomplishments, Bell even invented a portable desalination device for use by shipwrecked sailors.

  In one episode illustrating the breadth of his work, the White House called upon Bell when U.S. President James Garfield was shot in the back by a disgruntled federal worker in 1881. The bullet had lodged in the president’s chest but did not kill him, and Garfield’s advisers asked Bell to see if he could devise a means to help surgeons locate the bullet. Working frantically, Bell met the challenge by developing a crude metal detector using induction coils and a telephone. The machine worked brilliantly, but Bell was stymied in trying it on the ailing president when he couldn’t make the machine stop buzzing. He never imagined that Garfield’s state-of-the-art, high-tech mattress contained metal springs, and no one in the White House had known to mention it. Within days, Garfield died from the infected wound, despite Bell’s frenzied and creative efforts.

  Not long afterward, when Bell’s son, Edward, died of a collapsed lung soon after birth, Bell combated his grief by developing a “vacuum jacket” apparatus to help patients with similar respiratory ailments to breathe. That invention predated the so-called iron lung by some four decades.

  Now Bell is devoting his formidable inventive attentions to the challenges of flight. He will, Curtiss feels sure, bring a vast knowledge of many related scientific fields to the enterprise. He has traveled the world and remained in close contact with an extraordinary collection of colleagues from scientific and high-society circles. He is also an impressive polymath who seems to read everything, keeping voluminous notebooks and scrapbooks of clippings drawn from a mind-boggling array of American, British, French, and German publications.

  Even more attractive to Curtiss than the breadth of Bell’s knowledge and contacts is the simple fact that, after Bell’s extraordinary initial success with the telephone, he has never stopped inventing and is wholly unafraid to apply his talents to wildly disparate ventures. He is an energetic and independent thinker who has made his own, distinct route through the world. Bell’s many successes attest to the fact that he can bring vast experience in the day-to-day process of technological invention that will be indispensable to the group.

  If he ever doubted it, Curtiss’s extended visit helps fully persuade him of Bell’s brilliance. Despite Bell’s modest diary entry about being merely a coordinator of the project, Curtiss recognizes that he is a remarkable inventor, one of the true scientific and technological powerhouses of his day. Equally impressive is the undeniable way he has thrown himself wholeheartedly into the project. Even at age sixty, with a full life and a long record of achievements behind him as well as ongoing projects, Bell is embarking with gusto upon the task of designing a flying machine.

  In addition to all these assets, Curtiss adds the fact that aviation is Bell’s most enduring interest aside from speech. Even his telephone assistant Thomas A. Watson recalled, “From my earliest association with Bell he discussed with me the possibility of making a machine that would fly like a bird. He took every opportunity that presented itself to study birds, living or dead…. I fancy, if Bell had been in easy financial circumstances, he might have dropped his telegraph experiments and gone into flying machines at that time.”

  Bell’s passion to build a flying machine was only heightened through his close friendship with Samuel Pierpont Langley. Thinking of Mabel’s story of Bell’s unswerving attention to the sugar cubes at his honeymoon breakfast table, Curtiss considers it an undeniable asset that, as Mabel now likes to remark, her husband Alec is “just gone about flying.”

  At the end of his weeklong visit, Curtiss is sorry to leave the remarkable, close-knit group. He returns to Lena in Hammondsport with a new outlook about the prospect of developing a working airplane—and also, perhaps, with a new sense of what it means to be an inventor.

  Curtiss’s style and his approach to engineering problems in the future will be forged by his association with Bell’s team. Before meeting Bell, Curtiss had harbored a deep skepticism not only about aviation but about inventors in general.

  “I used to resent being called an inventor,” Curtiss said much later. “An inventor, as people in country towns thought of him, was a wild-eyed, impractical person, with ideas that wouldn’t work. Perhaps I got some of that impression from J. T. Trowbridge’s poem, ‘Darius Green and his Flying Machine.’ My grandmother knew Mr. Trowbridge very well, and used to recite that poem to me as far back as I can remember.” The popular poem, published in booklet form with comic illustrations, lampooned an inventor’s harebrained efforts to fly. Trowbridge’s characterization, Curtiss said, simply reflected that, in terms of public esteem, inventors “didn’t stand very high in rural communities.”

  Curtiss’s visit to Beinn Bhreagh all but erases this childhood prejudice. His time at Bell’s estate was one of the most exciting experiences of his life. But he still worries about taking time away from his rapidly expanding business to explore aeronautics. Ultimately, according to at least one source, Lena encourages her husband to continue with Bell, coun
seling him to trust his instincts and Bell’s spectacular earlier success with the telephone.

  Within a week of returning to Hammondsport and receiving Lena’s blessing, Curtiss cables Bell to express his interest in joining the group. “I have given the Association plan considerable thought,” he writes, “and am very favorable toward it.”

  When he learns that Captain Baldwin has an engagement to exhibit his dirigible in Halifax, Curtiss uses the event as an impetus to schedule a return visit to Beinn Bhreagh at the end of September. With logs blazing in the cavernous stone fireplace of the great hall, the group formally votes to establish their association.

  After lengthy discussions, they amicably settle most of the particulars. They decide, for instance, that each person will get a chance to test his own aeronautical design. But their first effort will be to finish Bell’s pet project, a piloted, tetrahedral kite.

  Bell reiterates that, as an association dedicated to experimentation, he expects that there will be little or no profit, although any earnings will be divided equally among the partners. In her role as a funder, Mabel says, she will advance funds up to the amount of $20,000. As a show of gratitude, the group decides that, for each $1,000 she contributes, she will be assigned a 1 percent interest in any proceeds that might result from the group’s work.

  The group also settles on titles and salaries for the members: Bell is appointed the association’s chairman with no salary. As a commissioned officer in the U.S. Army, Lieutenant Thomas Selfridge, appointed secretary, also declines a salary. Casey Baldwin will serve as chief engineer and Douglas McCurdy is named treasurer. Each of the young men will receive an annual salary of $1,000. Reflecting his status and esteem within the group, Curtiss is formally appointed director of experiments, with a salary of $5,000. He says he will draw his salary only when his business frees him enough to participate fully in the aeronautical work.

  The next day, October 1, 1907, the group travels 230 miles to Halifax to make their new organization official. There, before a notary public and in the presence of the U.S. consul to Nova Scotia, the five members and their benefactor Mabel sign an agreement spelling out a yearlong arrangement. With this earnest and auspicious start, the Aerial Experiment Association, or AEA, is officially formed.

  As soon as they are through, the group celebrates with a trip to the Halifax fairgrounds to see Captain Baldwin fly his dirigible. The cool fall day offers fine and clear weather for flying and, as usual, Captain Baldwin puts on an impressive show, piloting his dirigible in controlled circles above the avid spectators. Bell is delighted. For all his interest and enthusiasm in aviation, it is the first piloted, motorized flight he has ever witnessed.

  With everyone in high spirits that evening, Captain Baldwin joins the group at a dinner hosted by the Bells at the Halifax Hotel to celebrate the new association. Bell toasts Curtiss and Captain Baldwin for the aeronautical accomplishments they have already achieved.

  Never much of a speech maker, it testifies to his ease with the group that Curtiss now offers up a formal statement noting that he is “honored to have the opportunity to associate myself with Dr. Bell and the other members of the Association.” With one big step, he has leaped into the vast unknown: the quest to design and build a working airplane.

  Back in Hammondsport, in a swirl of excitement, Curtiss again contacts the Wrights. His inclination is to cooperate in some fashion, and he offers this in a letter to the brothers on December 30, 1907. His tone is deferential and warm. He tells the Wrights of his role with the newly formed AEA. He invites them to visit Hammondsport. And he offers to provide them his latest V-8, 40-horsepower engine for free.

  Wilbur writes back declining both offers. But his tone is still friendly. “We remember your visit to Dayton with pleasure,” he notes. “The experience we had together in helping Captain Baldwin back to the fairgrounds was one not soon to be forgotten.”

  Less than a month later, in correspondence with Octave Chanute, Wilbur writes that, despite the stepped-up efforts of aviation researchers like Curtiss, he and Orville are confident that “an independent solution to the flying problem is at least five years away.” But Wilbur underestimates Curtiss and his new team. In an extraordinary collaborative effort, with Curtiss’s superior engine, Bell’s shrewd oversight, and many of the pieces of the aviation puzzle falling into place, the AEA will independently develop a working airplane in just five months.

  SIX

  FLIGHT OF THE JUNE BUG

  What a moment for the vivid imagination.

  The thing is done. Man flies!

  —DAVID FAIRCHILD, JULY 4, 1908

  Just past dawn on July 3, 1908, Glenn Curtiss, Lieutenant Thomas Selfridge, Douglas McCurdy, Casey Baldwin, and Henry Kleckler venture out to a makeshift hangar on the outskirts of Hammondsport. Their excitement mounts as first light streams across the verdant farmland around them.

  Since midwinter, when the Aerial Experiment Association moved its operations from Nova Scotia to Hammondsport, many in town have realized that Curtiss and his team are on to something extraordinary. Despite the early hour, about a dozen of Curtiss’s neighbors have trekked the two miles from Hammondsport to witness a spectacle. The team members stand quietly now on the edge of Stony Brook Farm. Here, beside a large potato patch, Harry Champlin, founder of the Pleasant Valley Wine Company, has built a half-mile racetrack for his horses. And, while the word has yet to come into common parlance, this morning the track will serve as a runway.

  The team gingerly rolls the new fragile contraption they call an aerodrome out from its makeshift tent. To the assembled spectators, it is a fabulous and strange hybrid machine, with vast, yellow wings of fabric and bamboo atop three delicate-looking bicycle wheels. Except for the large motorcycle engine behind the pilot’s seat, the curved, sail-like wings and slender brace wires give the contraption a vaguely nautical look. Tomorrow, on Independence Day, they will unveil their flying machine to the world, including a delegation of some of the country’s leading aeronautical experts. Today, however, Curtiss and his colleagues ready it for a final test run.

  As planned, the members of the Aerial Experiment Association have rotated responsibility for each prototype that the team has created together. Today, Curtiss, who has masterminded this airplane, will serve as pilot.

  The machine has been painstakingly handcrafted, blending proven features with a few untested innovations. Like its predecessor, this is a biplane; its top wings arch downward at the tips while the bottom set arcs gently upward. The effect, as one observer will note later, is reminiscent of a large, sideways parenthesis. Among the novel features, perhaps the most notable is the means of lateral control. It sports a pair of small, triangular flaps at the tips of each set of wings. The wing flaps are adjusted by means of a yoke that fits over the pilot’s shoulders. The pilot can keep the airplane from rolling out of control simply by leaning as it banks on a turn. Now known as ailerons, they are a feature of almost every modern airplane.

  This latest AEA machine also boasts improvements to the wings themselves. At the suggestion of Octave Chanute, the team has coated them with a paintlike formula—a mixture of paraffin, gasoline, turpentine, and yellow ochre—that both reduces air resistance and enhances the craft’s visibility.

  June Bug, as Bell has christened the flying machine, is powered by the Curtiss shop’s largest motor: a 40-horsepower, 8-cylinder, air-cooled engine weighing nearly 200 pounds. A year earlier, Curtiss used a similar motor, built onto an elongated motorcycle frame, to careen at an astonishing 136 miles per hour along a track in Ormond Beach, Florida, earning himself the title of “the fastest man on earth.” Now the same engine model drives one large screw propeller located behind the wings of an audacious machine designed to thrust him not just faster than anyone, but into the sky.

  The AEA has entered the June Bug into competition for the Scientific American Trophy, a highly publicized prize offered for the first airplane in America that can prove, before judges, its abil
ity to remain airborne for one kilometer. Unfortunately, though, while Curtiss has been practicing intensively with the June Bug since its completion a week earlier, he has only once managed to keep it airborne for that long. Yet the AEA has already confidently announced that it will fly for that distance before a visiting delegation of judges in a demonstration tomorrow. On this, the final dress rehearsal before the official trial, the team urgently hopes to live up to the claim with a successful dry run.

  Beneath a nearly cloudless sky, Curtiss straps himself into the pilot’s seat. The engine roars and the airplane’s propeller whirls behind his head. As the rest of the team backs away, the June Bug starts to roll along the racetrack and then, almost magically, lifts from the ground. But just a few hundred yards into the flight, Curtiss feels the machine shake. He struggles at the controls, but there is little he can do as an unexpected gust knocks the June Bug askew, causing it to tumble roughly to the ground.

  Fearing for Curtiss’s safety, the team runs across the field to his side. The shaken pilot emerges unscathed, but then a bleak realization quickly takes hold. The airplane is badly damaged, its left wing broken, its front control smashed, and one of its wheels twisted nearly in half. With the invited aeronautical delegation due the next day, the AEA’s vaunted, one-and-only prototype now lies before them as a crumpled wreck. Silence betrays the group’s disappointment and gloomy sense of defeat.

  Selfridge is the first to voice the unspeakable, suggesting that they postpone the public flight and telephone the delegation in New York City immediately to urge them to delay their visit. Curtiss alone is unwilling to accept such a setback. He insists that they can rebuild the aircraft in time, turning to Kleckler—as much for moral support as in the hope that, given his technical assessment, he will concur.

 

‹ Prev