Although it was ignored for years, Bayes’ solution to the inverse probability of causes was a masterpiece. He transformed probability from a gambler’s measure of frequency into a measure of informed belief. A card player could start by believing his opponent played with a straight deck and then modify his opinion each time a new hand was dealt. Eventually, the gambler could wind up with a better assessment of his opponent’s honesty.
Bayes combined judgments based on prior hunches with probabilities based on repeatable experiments. He introduced the signature features of Bayesian methods: an initial belief modified by objective new information. He could move from observations of the world to abstractions about their probable cause. And he discovered the long-sought grail of probability, what future mathematicians would call the probability of causes, the principle of inverse probability, Bayesian statistics, or simply Bayes’ rule.
Given the revered status of his work today, it is also important to recognize what Bayes did not do. He did not produce the modern version of Bayes’ rule. He did not even employ an algebraic equation; he used Newton’s old-fashioned geometric notation to calculate and add areas. Nor did he develop his theorem into a powerful mathematical method. Above all, unlike Price, he did not mention Hume, religion, or God.
Instead, he cautiously confined himself to the probability of events and did not mention hypothesizing, predicting, deciding, or taking action. He did not suggest possible uses for his work, whether in theology, science, or social science. Future generations would extend Bayes’ discovery to do all these things and to solve a myriad of practical problems. Bayes did not even name his breakthrough. It would be called the probability of causes or inverse probability for the next 200 years. It would not be named Bayesian until the 1950s.
In short, Bayes took the first steps. He composed the prelude for what was to come.
For the next two centuries few read the Bayes-Price article. In the end, this is the story of two friends, Dissenting clergymen and amateur mathematicians, whose labor had almost no impact. Almost, that is, except on the one person capable of doing something about it, the great French mathematician Pierre Simon Laplace.
2.
the man who did everything
Just across the English Channel from Tunbridge Wells, about the time that Thomas Bayes was imagining his perfectly smooth table, the mayor of a tiny village in Normandy was celebrating the birth of a son, Pierre Simon Laplace, the future Einstein of his age.
Pierre Simon, born on March 23, 1749, and baptized two days later, came from several generations of literate and respected dignitaries. His mother’s relatives were well-to-do farmers, but she died when he was young, and he never referred to her. His father kept the stagecoach inn in picturesque Beaumonten-Auge, was a leader of the community’s 472 inhabitants, and served 30 years as mayor. By the time Pierre Simon was a teenager his father seems to have been his only close relative. In years to come Pierre Simon’s decision to become a mathematician would shatter their relationship almost irretrievably.1
Fortunately for the boy there was never any question about his getting an education. Attending school was becoming the norm in France in the 1700s, an enormous revolution fueled by the Catholic Church’s fight against Protestant heresy and by parents convinced that education would enrich their children spiritually, intellectually, and financially. The question was, what kind of schooling?
Decades of religious warfare between Protestants and Catholics and several horrendous famines caused by cold weather had made France a determinedly secular country intent on developing its resources. Pierre Simon could have studied modern science and geometry in one of the country’s many new secular schools. Instead, the elder Laplace enrolled his son in a local primary and secondary school where Benedictine monks produced clergy for the church and soldiers, lawyers, and bureaucrats for the crown. Thanks to the patronage of the Duke of Orleans, local day students like Pierre Simon attended free. The curriculum was conservative and Latin-based, heavy on copying, memorization, and philosophy. But it left Laplace with a fabulous memory and almost unbelievable perseverance.
Although the monks probably did not know it, they were competing with the French Enlightenment for the child’s attention. Contemporaries called it the Century of Lights and the Age of Science and Reason, and the popularization of science was its most important intellectual phenomenon. Given the almost dizzying curiosity of the times, it is not surprising that, shortly after his tenth birthday, Pierre Simon was profoundly affected by a spectacular scientific prediction.2
Decades before, the English astronomer Edmond Halley had predicted the reappearance of the long-tailed comet that now bears his name. A trio of French astronomers, Alexis Claude Clairaut, Joseph Lalande, and Nicole-Reine Lepaute, the wife of a celebrated clockmaker, solved a difficult three-body problem and discovered that the gravitational pull of Jupiter and Saturn would delay the arrival of Halley’s comet. The French astronomers accurately pinpointed the date—mid-April 1759 plus or minus a month—when Europeans would be able to see the comet returning from its orbit around the sun. The comet’s appearance on schedule and on course electrified Europeans. Years later Laplace said it was the event that made his generation realize that extraordinary events like comets, eclipses, and severe droughts were caused not by divine anger but by natural laws that mathematics could reveal.
Laplace’s extraordinary mathematical ability may not yet have been apparent when he turned 17 in 1766, because he did not go to the University of Paris, which had a strong science faculty. Instead he went to the University of Caen, which was closer to home and had a solid theological program suitable for a future cleric.
Yet even Caen had mathematical firebrands offering advanced lectures on differential and integral calculus. While English mathematicians were getting mired in Newton’s awkward geometric version of calculus, their rivals on the Continent were using Gottfried Leibniz’s more supple algebraic calculus. With it, they were forming equations and discovering a fabulous wealth of enticing new information about planets, their masses and details of their orbits. Laplace emerged from Caen a swashbuckling mathematical virtuoso eager to take on the scientific world. He had also become, no doubt to his father’s horror, a religious skeptic.
At graduation Laplace faced an anguishing dilemma. His master’s degree permitted him to take either the priestly vows of celibacy or the title of abbé, signifying a low-ranking clergyman who could marry and inherit property. Abbés did not have good reputations; Voltaire called them “that indefinable being which is neither ecclesiastic nor secular . . . young men, who are known for their debauchery.”3 An engraving of the period, “What Does the Abbé Think of It?” shows the clergyman peering appreciatively down a lady’s bosom as she dresses.4 Still, the elder Laplace wanted his son to become a clergyman.
If Laplace had been willing to become an abbé, his father might have helped him financially, and Laplace could have combined church and science. A number of abbés supported themselves in science, the most famous being Jean Antoine Nollet, who demonstrated spectacular physics experiments to the paying public. For the edification of the king and queen of France, Nollet sent a charge of static electricity through a line of 180 soldiers to make them leap comically into the air. Two abbés were even elected to the prestigious Royal Academy of Sciences. Still, the lot of most abbé-scientists was neither lucrative nor intellectually challenging. The majority found low-level jobs tutoring the sons of rich nobles or teaching elementary mathematics and science in secondary schools. University-level opportunities were limited because during the 1700s professors transmitted knowledge from the past instead of doing original research.
But Caen had convinced Laplace that he wanted to do something quite new. He wanted to be a full-time, professional, secular, mathematical researcher. And he wanted to explore the new algebra-generated, data-rich world of science. To his father, an ambitious man in bucolic France, a career in mathematics must have seemed preposterous.
/>
Young Laplace made his move in the summer of 1769, shortly after completing his studies at Caen. He left Normandy and traveled to Paris, clutching a letter of recommendation to Jean Le Rond d’Alembert, the most powerful mathematician of the age, one of Europe’s most notorious anticlerics, and the object of almost incessant Jesuit attacks. D’Alembert was a star of the Enlightenment and the chief spokesman for the Encyclopédie, which was making an enormous body of empirical knowledge universally available, scientific, and free of religious dogma. By throwing in his lot with d’Alembert, Laplace effectively cut his ties to the Catholic Church. We can only imagine his father’s reaction, but we know that Laplace did not return home for 20 years and did not attend the old man’s funeral.
Once in Paris, Laplace immediately approached the great d’Alembert and showed him a four-page student essay on inertia. Years later Laplace could still recite passages from it. Although besieged by applicants, d’Alembert was so impressed that within days he had arranged a paying job for Laplace as an instructor of mathematics at the new secular, mathematics-based Royal Military School for the younger sons of minor nobles. The school, located behind Les Invalides in Paris, provided Laplace with a salary, housing, meals, and money for wood to heat his room in winter. It was precisely the kind of job he had hoped to avoid.
Laplace could have tried to find work applying mathematics to practical problems in one of the monarchy’s numerous research establishments or manufacturing plants. Many mathematically talented young men from modest families were employed in such institutions. But Laplace and his mentor were aiming far higher. Laplace wanted the challenge of doing basic research full time. And to do that, as d’Alembert must have told him, he had to get elected to the Royal Academy of Sciences.
In striking contrast to the amateurism of the Royal Society of London, the French Royal Academy of Sciences was the most professional scientific institution in Europe. Although aristocratic amateurs could become honorary members, the organization’s highest ranks were composed of working scientists chosen by merit and paid to observe, collect, and investigate facts free of dogma; to publish their findings after peer review; and to advise the government on technical issues like patents. To augment their low salaries, academicians could use their prestige to cobble together various part-time jobs.
Without financial support from the church or his father, however, Laplace had to work fast. Since most academy members were chosen on the basis of a long record of solid accomplishment, he would have to be elected over the heads of more senior men. And for that to happen, he needed to make a spectacular impact.
D’Alembert, who had made Newton’s revolution the focus of French mathematics, urged Laplace to concentrate on astronomy. D’Alembert had a clear problem in mind.
Over the previous two centuries mathematical astronomy had made great strides. Nicolaus Copernicus had moved Earth from the center of the solar system to a modest but accurate position among the planets; Johannes Kepler had connected the celestial bodies by simple laws; and Newton had introduced the concept of gravity. But Newton had described the motions of heavenly bodies roughly and without explanation. His death in 1727 left Laplace’s generation an enormous challenge: showing that gravitation was not a hypothesis but a fundamental law of nature.
Astronomy was the era’s most quantified and respected science, and only it could test Newton’s theories by explaining precisely how gravitation affects the movements of tides, interacting planets and comets, our moon, and the shape of Earth and other planets. Forty years of empirical data had been collected, but, as d’Alembert warned, a single exception could bring the entire edifice tumbling down.
The burning scientific question of the day was whether the universe was stable. If Newton’s gravitational force operates throughout the universe, why don’t the planets collide with each other and cause the cosmic Armageddon described in the biblical book of Revelation? Was the end of the world at hand?
Astronomers had long been aware of alarming evidence suggesting that the solar system was inherently unstable. Comparing the actual positions of the most remote known planets with centuries-old astronomical observations, they could see that Jupiter was slowly accelerating in its orbit around the sun while Saturn was slowing down. Eventually, they thought, Jupiter would smash into the sun, and Saturn would spin off into space. The problem of predicting the motions of many interacting bodies over long periods of time is complex even today, and Newton concluded that God’s miraculous intervention kept the heavens in equilibrium. Responding to the challenge, Laplace decided to make the stability of the universe his lifework. He said his tool would be mathematics and it would be like a telescope in the hands of an astronomer.
For a short time Laplace actually considered modifying Newton’s theory by making gravity vary with a body’s velocity as well as with its mass and distance. He also wondered fleetingly whether comets might be disturbing the orbits of Jupiter and Saturn. But he changed his mind almost immediately. The problem was not Newton’s theory. The problem was the data astronomers used.
Newton’s system of gravitation could be accepted as true only if it agreed with precise measurements, but observational astronomy was awash with information, some of it uncertain and inadequate. Working on the problem of Jupiter and Saturn, for example, Laplace would use observations made by Chinese astronomers in 1100 BC, Chaldeans in 600 BC, Greeks in 200 BC, Romans in AD 100, and Arabs in AD 1000. Obviously, not all data were equally valuable. How to resolve errors, known delicately as discrepancies, was anybody’s guess.
The French academy was tackling the problem by encouraging the development of more precise telescopes and graduated arcs. And as algebra improved instrumentation, experimentalists were producing more quantitative results. In a veritable information explosion, the sheer collection and systemization of data accelerated through the Western world. Just as the number of known plant and animal species expanded enormously during the 1700s, so did knowledge about the physical universe. Even as Laplace arrived in Paris, the French and British academies were sending trained observers with state-of-the-art instrumentation to 120 carefully selected locations around the globe to time Venus crossing the face of the sun; this was a critical part of Capt. James Cook’s original mission to the South Seas. By comparing all the measurements, French mathematicians would determine the approximate distance between the sun and Earth, a fundamental natural constant that would tell them the size of the solar system. But sometimes even up-to-date expeditions provided contradictory data about whether, for instance, Earth was shaped like an American football or a pumpkin.
Dealing with large amounts of complex data was emerging as a major scientific problem. Given a wealth of observations, how could scientists evaluate the facts at their disposal and choose the most valid? Observational astronomers typically averaged their three best observations of a particular phenomenon, but the practice was as straightforward as it was ad hoc; no one had ever tried to prove its validity empirically or theoretically. The mathematical theory of errors was in its infancy.
Problems were ripe for the picking and, with his eye on membership in the Royal Academy, Laplace bombarded the society with 13 papers in five years. He submitted hundreds of pages of powerful and original mathematics needed in astronomy, celestial mechanics, and important related issues. Astutely, he timed his reports to appear when openings occurred in the academy’s membership. The secretary of the academy, the Marquis de Condorcet, wrote that never before had the society seen “anyone so young, present to it in so little time, so many important Mémoires, and on such diverse and such difficult matters.”5
Academy members considered Laplace for membership six times but rejected him repeatedly in favor of more senior scientists. D’Alembert complained furiously that the organization refused to recognize talent. Laplace considered emigrating to Prussia or Russia to work in their academies.
During this frustrating period Laplace spent his free afternoons digging in the mathe
matical literature in the Royal Military School’s 4,000-volume library. Analyzing large amounts of data was a formidable problem, and Laplace was already beginning to think it would require a fundamentally new way of thinking. He was beginning to see probability as a way to deal with the uncertainties pervading many events and their causes. Browsing in the library’s stacks, he discovered an old book on gambling probability, The Doctrine of Chances, by Abraham de Moivre. The book had appeared in three editions between 1718 and 1756, and Laplace may have read the 1756 version. Thomas Bayes had studied an earlier edition.
Reading de Moivre, Laplace became more and more convinced that probability might help him deal with uncertainties in the solar system. Probability barely existed as a mathematical term, much less as a theory. Outside of gambling, it was applied in rudimentary form to philosophical questions like the existence of God and to commercial risk, including contracts, marine and life insurance, annuities, and money lending.
Laplace’s growing interest in probability created a diplomatic problem of some delicacy because d’Alembert believed probability was too subjective for science. Young as he was, Laplace was confident enough in his mathematical judgment to disagree with his powerful patron. To Laplace, the movements of celestial bodies seemed so complex that he could not hope for precise solutions. Probability would not give him absolute answers, but it might show him which data were more likely to be correct. He began thinking about a method for deducing the probable causes of divergent, error-filled observations in astronomy. He was feeling his way toward a broad general theory for moving mathematically from known events back to their most probable causes. Continental mathematicians did not know yet about Bayes’ discovery, so Laplace called his idea “the probability of causes” and “the probability of causes and future events, derived from past events.”6
The Theory That Would Not Die Page 3