Dataclysm: Who We Are (When We Think No One's Looking)

Home > Other > Dataclysm: Who We Are (When We Think No One's Looking) > Page 25
Dataclysm: Who We Are (When We Think No One's Looking) Page 25

by Christian Rudder

Quantified Self movement

  “Quantitative Analysis of Culture Using Millions of Digitized Books” (Michel and Aiden), n

  race, itr.1, itr.2, itr.3, 7.1, 8.1, 8.2

  attractiveness and, 6.1, 6.2

  four largest groupings by

  Internet use and, itr.1, 6.1, 6.2

  jokes about, 8.1n, 8.2, 9.1

  quantitative analysis of, 6.1, nts.1

  rhetoric about

  tokenism and

  racism, itr.1, 1.1, 5.1, 8.1, 9.1, 11.1

  data on, itr.1, 6.1, nts.1

  dating and, 6.1, 6.2

  expression of, itr.1, 6.1, 8.1, 9.1, nts.1

  Obama on

  pervasiveness of, 6.1, 8.1

  politics and

  stereotypes of, 8.1, 10.1

  radio

  CB, 9.1, nts.1

  ratings

  compatibility, 6.1, 6.2, 6.3, 6.4

  congressional, itr.1, itr.2

  of men and women, itr.1, itr.2, itr.3, itr.4, itr.5, 1.1

  pizza, itr.1, itr.2

  Reagan, Ronald

  Reddit, itr.1, itr.2, itr.3, 2.1, 12.1, 13.1, 14.1n, nts.1, nts.2

  community and

  subreddit pages on, 2.1n, 12.1

  relationships

  assimilated

  bonds of, 4.1, 4.2, 4.3

  breakup of, 1.1, 4.1

  common interests in

  connectors in, 4.1, 4.2

  of couples, 1.1, 4.1, 5.1, bm2.1

  courtship, 1.1, 4.1

  evaluation of

  family

  leading separate lives in, 4.1, 4.2

  progression of

  “real life,”

  romantic, 1.1, 2.1, 4.1, 4.2, 5.1, 6.1, 7.1, nts.1

  stability in, itr.1, 4.1

  see also dating; friends; marriage

  Republican National Convention of 2008

  Republican Party, 5.1, 8.1, 13.1, 14.1, nts.1

  Richter scale, 7.1, 12.1, nts.1

  Rieger, Gerulf, 11.1, nts.1

  Romans, ancient

  Romney, Mitt, Twitter followers of, 13.1, 13.2, nts.1

  Rorschach tests

  Rove, Karl

  Russia, 9.1n, bm1.1

  Ruthstrom, Ellyn, 11.1, nts.1

  Sacco, Justine, 9.1, 9.2, 12.1, 13.1, nts.1

  Salesforce.com, 13.1, 13.2, nts.1

  Salk, Jonas

  Samsung

  Sapolsky, Robert, 7.1, nts.1

  SAT

  science, itr.1, 1.1, 2.1, 3.1, 6.1, 9.1

  computer, 4.1, 13.1, 14.1

  data, itr.1, itr.2, 2.1, 8.1n, 12.1, 12.2, 13.1, 14.1, 14.2, bm1.1, bm2.1, bm2.2

  genetic

  network analysis

  political

  social, itr.1, itr.2, 5.1, 6.1, 8.1, 9.1, 10.1, bm2.1

  Scientific American, 14.1, 14.2, nts.1, nts.2

  Scruff, n

  Seacrest, Ryan

  seismology, 7.1, 12.1

  selfies

  September 11, 2001, terrorist attacks

  sex, itr.1, 1.1, 6.1, 8.1, 10.1, 11.1

  attractiveness and, itr.1, 1.1, 2.1, 6.1, 7.1, 7.2, bm2.1

  casual, 5.1, 11.1

  regret and, itr.1, nts.1

  threesome

  see also bisexuality; homosexuality; lesbianism; lust

  Shakespeare, William

  Sharpton, Al

  Shazam

  Shiftgig, 7.1, 7.2, nts.1

  showers, 12.1, 12.2

  Silver, Nate, 11.1, 11.2, 14.1, nts.1

  Simmons, Gene

  “six degrees of separation” theory

  Slackers (film)

  Slate, itr.1n, 3.1, 13.1, nts.1

  smartphones, itr.1, 12.1, 12.2

  smell, sense of, 2.1, nts.1

  Snapchat

  Snowden, Edward, 14.1, 14.2

  social desirability bias

  social graphs, 4.1, 4.2, 4.3, 4.4

  social media, 4.1, 6.1, 7.1, 9.1, 9.2, 13.1, 13.2, 14.1, nts.1

  unrest and protest fanned on

  social physics

  solar eclipse of 1919

  Sorell, C. Joseph, 10.1n, nts.1

  Sparks, Nicholas

  speech

  hate, 8.1, 9.1

  partisan

  Spielberg, Steven

  sports, 6.1, 8.1, 10.1, 12.1

  Stanford-Binet test

  states’ rights

  statistics, itr.1, 6.1, 6.2, 10.1, 10.2

  Stephens-Davidowitz, Seth, 8.1n, 8.2, 11.1, 11.2, bm2.1, nts.1, nts.2, nts.3

  stock market predictions

  Street Fighter II

  string theory

  Strunk, William

  Suler, John

  Supreme Court, US, 8.1, 13.1

  symmetric beta distribution

  Taboo (game)

  talking points

  Target, 13.1, nts.1

  tattoos, 2.1, 2.2

  taxation, 8.1, 14.1, 14.2

  Tea Party, 8.1, 9.1

  technology, itr.1, itr.2, 4.1, 5.1, 9.1, 12.1, 13.1, 14.1

  cultural effect of, 3.1, 3.2, 9.1

  harnessing of

  telephones, itr.1, 3.1, 3.2, 3.3, 4.1, 4.2, 9.1

  television, 6.1, 6.2, 14.1n

  Tennyson, Alfred, Lord

  terrorism

  Texas, 8.1, 12.1, 12.2

  text messages, 3.1, 3.2, 14.1

  average length of, 3.1, 3.2, 3.3

  copy-and-paste vs. from-scratch

  keystrokes used on, 3.1, 3.2, 3.3

  response rates to, 3.1, 3.2, 3.3

  revision of

  time spent on, 3.1, 3.2

  Thoreau, Henry David, 11.1, nts.1

  thought, 1.1, 8.1, 8.2

  time, 3.1, 3.2, 8.1

  passage of, 3.1, 3.2

  spent on messages, 3.1, 3.2

  Tinder, itr.1, 7.1

  tribes, 3.1, 7.1, 7.2, 9.1, nts.1

  Trump, Donald

  Tufte, Edward R., bm1.1, nts.1

  Tumblr, itr.1, 7.1, 9.1, 9.2, nts.1, nts.2

  Clients from Hell posts on

  Twitter, itr.1, itr.2, itr.3, itr.4, itr.5, 3.1, 3.2, 3.3, 4.1, 8.1, 9.1, 12.1, 12.2, 13.1, nts.1

  average word length on

  black users of, 13.1, nts.1

  common hashtags on, 13.1, 13.2, 13.3

  followers on, 13.1, 13.2, 13.3

  #HasJustineLandedYet topic on, 9.1, 9.2, nts.1

  language style and vocabulary on, 3.1, 13.1, nts.1

  messaging patterns of subgroups on

  most common words on, 3.1, 10.1, 10.2

  140-character limit on, 3.1, 3.2

  TeamFollowBack on, 13.1, 13.2

  Trending Topics list on

  tweets and retweets on, itr.1, itr.2, 3.1, 3.2, 3.3, 6.1, 9.1, 9.2, 9.3, 9.4, 12.1, 12.2, 13.1, 13.2, 13.3, 13.4, nts.1

  TwitterWind

  ugliness, 1.1, 2.1, 6.1, 8.1

  race and

  social costs of

  Ulysses (Joyce)

  uniform resource locators (URLs), 2.1, 3.1n

  Union of Soviet Socialist Republics (USSR), 12.1, nts.1

  United Kingdom (UK), 6.1, 12.1, 13.1, 14.1, nts.1

  United States, 6.1, 8.1, 8.2, 12.1

  Internet usage in

  moving in, 12.1, nts.1

  national security apparatus of, itr.1, 14.1

  Twitter use in

  universal product code (UPC)

  Utsunomiya

  variance concept

  verbs, 3.1, 3.2

  Viet-Cong, 8.1, nts.1

  Vietnam Memorial, bm1.1, nts.1

  Vietnam War, 8.1, bm1.1, nts.1

  visual perception, itr.1n, 6.1

  Wall Street Journal, 7.1, nts.1

  Walmart, 12.1, 12.2, 12.3, nts.1

  Warden, Pete

  Washington, DC, “Million” marches on, 14.1, nts.1

  Washington Post, 14.1, 14.2, 14.3, nts.1

  Waters, John, 2.1, 2.2, nts.1

  Watson, James

  wealth, 6.1, 7.1,
7.2n, 7.3, 11.1, 13.1

  One Percent of

  websites, itr.1, 4.1, 6.1, 12.1, 12.2

  company

  dating, itr.1, itr.2, itr.3, 1.1, 1.2, 2.1, 2.2, 3.1, 3.2, 4.1, 4.2, 5.1, 7.1, 12.1

  job, itr.1, 7.1, 7.2

  person-to-person interaction on, itr.1, itr.2, 2.1, 5.1, 6.1

  ratings on, itr.1, itr.2, itr.3, itr.4, itr.5, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.1, 2.2, 6.1

  social, itr.1, 4.1, 6.1

  see also specific websites

  WEIRD research, itr.1, 7.1n, nts.1

  Wendy’s, 13.1, nts.1

  “What Is Beautiful Is Good,” 7.1, nts.1

  WhatsApp

  WhoBeefed81

  Who Owns the Future? (Lanier)

  “Why Do White People Have Thin Lips?” (Baker and Potts), 8.1, nts.1

  Wikipedia, 10.1, nts.1, nts.2

  Wilson, Lorne John, bm1.1, nts.1

  Windows, 4.1, nts.1

  Wodehouse, P. G., 3.1, 3.2

  Wolf, Naomi

  women:

  aging of, 1.1, 1.2, 1.3, 1.4

  Asian, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 10.1, 10.2, 10.3

  attraction of men to, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 2.1, 2.2, 2.3, 5.1, 5.2, 6.1, 6.2, 6.3, 6.4

  attractiveness of men to, 1.1, 1.2, 1.3, 5.1, 5.2

  black, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 10.1, 10.2

  contacting of men by

  dating pool of

  extra pounds on

  Latina, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 10.1, 10.2

  men’s contacting of, 1.1, 1.2, 1.3, 1.4, 2.1, 3.1

  menstrual cycles of

  pregnancies of, 9.1, 13.1, 14.1, nts.1

  straight, 11.1

  unconventional-looking, 2.1, 2.2, 2.3

  white, itr.1, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 10.1, 10.2

  Wooderson’s law, 1.1, bm2.1

  words:

  antithetical, 10.1, 10.2, 10.3

  changes in use of, 3.1, 3.2, 3.3

  ethnic preferences for, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9

  food, 3.1, 3.2

  frequency of, 3.1, 3.2, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9

  gender preferences for, 10.1, 10.2, 10.3, 10.4, 10.5, 10.6, 10.7, 10.8, 10.9, 10.10

  negative, 8.1, 9.1, 9.2

  “netspeak,”

  self-descriptive, 10.1, 10.2

  shortening and contraction of, 3.1, 3.2, 3.3, 13.1

  as social connectors, 3.1, 3.2

  of Twitter users, 13.1

  typing of, 3.1, 3.2, 3.3, 3.4, 3.5, 8.1

  written

  World War II

  Wortham, Jenna, 13.1, 14.1, nts.1, nts.2

  writing

  changing culture of, itr.1, 3.1, 3.2, 3.3

  Xbox One, 14.1, nts.1

  Yahoo, 14.1, nts.1

  Youth for Understanding program

  YouTube, 3.1, 5.1, 12.1

  Zimmerman, George, 8.1, nts.1

  Zinn, Howard

  Zipf’s law, 10.1, nts.1

  Zipf’s Law and Vocabulary (Sorell), 10.1n

  Zook, Matthew, 12.1, nts.1

 

 

 


‹ Prev