Indeed, the way Heracles managed to control Hydra was by cauterizing the wounds on the stumps of the heads that he had just severed. He thus prevented the regrowth of the heads and the exercise of antifragility. In other words, he disrupted the recovery.
Table 2 shows the difference between the two types. Note that there may be intermediate steps between engineered and organic, though things tend to cluster in one bucket or the other.
The reader can get a hint of the central problem we face with top-down tampering with political systems (or similar complex systems), the subject of Book II. The fragilista mistakes the economy for a washing machine that needs monthly maintenance, or misconstrues the properties of your body for those of a compact disc player. Adam Smith himself made the analogy of the economy as a watch or a clock that once set in motion continues on its own. But I am certain that he did not quite think of matters in these terms, that he looked at the economy in terms of organisms but lacked a framework to express it. For Smith understood the opacity of complex systems as well as the interdependencies, since he developed the notion of the “invisible hand.”
Click here for a larger image of this table.
But alas, unlike Adam Smith, Plato did not quite get it. Promoting the well-known metaphor of the ship of state, he likens a state to a naval vessel, which, of course, requires the monitoring of a captain. He ultimately argues that the only men fit to be captain of this ship are philosopher kings, benevolent men with absolute power who have access to the Form of the Good. And once in a while one hears shouts of “who is governing us?” as if the world needs someone to govern it.
Equilibrium, Not Again
Social scientists use the term “equilibrium” to describe balance between opposing forces, say, supply and demand, so small disturbances or deviations in one direction, like those of a pendulum, would be countered with an adjustment in the opposite direction that would bring things back to stability. In short, this is thought to be the goal for an economy.
Looking deeper into what these social scientists want us to get into, such a goal can be death. For the complexity theorist Stuart Kaufman uses the idea of equilibrium to separate the two different worlds of Table 2. For the nonorganic, noncomplex, say, an object on the table, equilibrium (as traditionally defined) happens in a state of inertia. So for something organic, equilibrium (in that sense) only happens with death. Consider an example used by Kaufman: in your bathtub, a vortex starts forming and will keep going after that. Such type of situation is permanently “far from equilibrium”—and it looks like organisms and dynamic systems exist in such a state.2 For them, a state of normalcy requires a certain degree of volatility, randomness, the continuous swapping of information, and stress, which explains the harm they may be subjected to when deprived of volatility.
CRIMES AGAINST CHILDREN
Not only are we averse to stressors, and don’t understand them, but we are committing crimes against life, the living, science, and wisdom, for the sake of eliminating volatility and variation.
I feel anger and frustration when I think that one in ten Americans beyond the age of high school is on some kind of antidepressant, such as Prozac. Indeed, when you go through mood swings, you now have to justify why you are not on some medication. There may be a few good reasons to be on medication, in severely pathological cases, but my mood, my sadness, my bouts of anxiety, are a second source of intelligence—perhaps even the first source. I get mellow and lose physical energy when it rains, become more meditative, and tend to write more and more slowly then, with the raindrops hitting the window, what Verlaine called autumnal “sobs” (sanglots). Some days I enter poetic melancholic states, what the Portuguese call saudade or the Turks hüzün (from the Arabic word for sadness). Other days I am more aggressive, have more energy—and will write less, walk more, do other things, argue with researchers, answer emails, draw graphs on blackboards. Should I be turned into a vegetable or a happy imbecile?
Had Prozac been available last century, Baudelaire’s “spleen,” Edgar Allan Poe’s moods, the poetry of Sylvia Plath, the lamentations of so many other poets, everything with a soul would have been silenced.…
If large pharmaceutical companies were able to eliminate the seasons, they would probably do so—for a profit, of course.
There is another danger: in addition to harming children, we are harming society and our future. Measures that aim at reducing variability and swings in the lives of children are also reducing variability and differences within our said to be Great Culturally Globalized Society.
Punished by Translation
Another forgotten property of stressors is in language acquisition—I don’t know anyone who ever learned to speak his mother tongue in a textbook, starting with grammar and, checked by biquarterly exams, systematically fitting words to the acquired rules. You pick up a language best thanks to situational difficulty, from error to error, when you need to communicate under more or less straining circumstances, particularly to express urgent needs (say, physical ones, such those arising in the aftermath of dinner in a tropical location).
One learns new words without making a nerd-effort, but rather another type of effort: to communicate, mostly by being forced to read the mind of the other person—suspending one’s fear of making mistakes. Success, wealth, and technology, alas, make this mode of acquisition much more difficult. A few years ago, when I was of no interest to anyone, foreign conference organizers did not assign to me the fawning “travel assistant” fluent in Facebook English, so I used to be forced to fend for myself, hence picking up vocabulary by finger pointing and trial and error (just as children do)—no handheld devices, no dictionary, nothing. Now I am punished by privilege and comfort—and I can’t resist comfort. The punishment is in the form of a person, fluent in English, greeting me by displaying my misspelled name at the airport, no stress, no ambiguity, and no exposure to Russian, Turkish, Croatian, or Polish outside of ugly (and organized) textbooks. What is worse, the person is unctuous; obsequious verbosity is something rather painful under the condition of jet lag.
Yet the best way to learn a language may be an episode of jail in a foreign country. My friend Chad Garcia improved his Russian thanks to an involuntary stay in the quarantine section of a hospital in Moscow for an imagined disease. It was a cunning brand of medical kidnapping, as during the mess after the end of the Soviet rule, hospitals were able to extort travelers with forced hospital stays unless they paid large sums of money to have their papers cleared. Chad, then barely fluent in the language, was forced to read Tolstoy in the original, and picked up quite a bit of vocabulary.
Touristification
My friend Chad benefited from the kind of disorder that is less and less prevalent thanks to the modern disease of touristification. This is my term for an aspect of modern life that treats humans as washing machines, with simplified mechanical responses—and a detailed user’s manual. It is the systematic removal of uncertainty and randomness from things, trying to make matters highly predictable in their smallest details. All that for the sake of comfort, convenience, and efficiency.
What a tourist is in relation to an adventurer, or a flâneur, touristification is to life; it consists in converting activities, and not just travel, into the equivalent of a script like those followed by actors. We will see how touristification castrates systems and organisms that like uncertainty by sucking randomness out of them to the last drop—while providing them with the illusion of benefit. The guilty parties are the education system, planning the funding of teleological scientific research, the French baccalaureate, gym machines, etc.
And the electronic calendar.
But the worse touristification is the life we moderns have to lead in captivity, during our leisure hours: Friday night opera, scheduled parties, scheduled laughs. Again, golden jail.
This “goal-driven” attitude hurts deeply inside my existential self.
The Secret Thirst for Chance
Which brings us
to the existential aspect of randomness. If you are not a washing machine or a cuckoo clock—in other words, if you are alive—something deep in your soul likes a certain measure of randomness and disorder.
There is a titillating feeling associated with randomness. We like the moderate (and highly domesticated) world of games, from spectator sports to having our breathing suspended between crap shoots during the next visit to Las Vegas. I myself, while writing these lines, try to avoid the tyranny of a precise and explicit plan, drawing from an opaque source inside me that gives me surprises. Writing is only worth it when it provides us with the tingling effect of adventure, which is why I enjoy the composition of books and dislike the straitjacket of the 750-word op-ed, which, even without the philistinism of the editor, bores me to tears. And, remarkably, what the author is bored writing bores the reader.
If I could predict what my day would exactly look like, I would feel a little bit dead.
Further, this randomness is necessary for true life. Consider that all the wealth of the world can’t buy a liquid more pleasurable than water after intense thirst. Few objects bring more thrill than a recovered wallet (or laptop) lost on a train. Further, in an ancestral habitat we humans were prompted by natural stimuli—fear, hunger, desire—that made us work out and become fit for our environment. Consider how easy it is to find the energy to lift a car if a crying child is under it, or to run for your life if you see a wild animal crossing the street. Compare this to the heaviness of the obligation to visit the gym at the planned 6 P.M. and be bullied there by some personal trainer—unless of course you are under the imperative to look like a bodyguard. Also consider how easy it is to skip a meal when the randomness in the environment causes us to do so, because of lack of food—as compared to the “discipline” of sticking to some eighteen-day diet plan.
There exist the kind of people for whom life is some kind of project. After talking to them, you stop feeling good for a few hours; life starts tasting like food cooked without salt. I, a thrill-seeking human, have a b***t detector that seems to match my boredom detector, as if we were equipped with a naturalistic filter, dullness-aversion. Ancestral life had no homework, no boss, no civil servants, no academic grades, no conversation with the dean, no consultant with an MBA, no table of procedure, no application form, no trip to New Jersey, no grammatical stickler, no conversation with someone boring you: all life was random stimuli and nothing, good or bad, ever felt like work.3 Dangerous, yes, but boring, never.
Finally, an environment with variability (hence randomness) does not expose us to chronic stress injury, unlike human-designed systems. If you walk on uneven, not man-made terrain, no two steps will ever be identical—compare that to the randomness-free gym machine offering the exact opposite: forcing you into endless repetitions of the very same movement.
Much of modern life is preventable chronic stress injury.
Next, let us examine a wrinkle of evolution, that great expert on antifragility.
1 Another way to see it: machines are harmed by low-level stressors (material fatigue), organisms are harmed by the absence of low-level stressors (hormesis).
2 These are the so-called dissipative structures, after the works of the physicist Ilya Prigogine, that have a quite different status from simple equilibrium structures: they are formed and maintained through the effect of exchange of energy and matter in permanent nonequilibrium conditions.
3 Neither Rousseau nor Hobbes. True, life then was perhaps “brutal and short,” but it is a severe logical mistake to present a tradeoff, to use unsavory aspects of early humanity as a necessary cost of avoiding modern tortures. There is no reason to not want advantages from both eras.
CHAPTER 4
What Kills Me Makes Others Stronger
Antifragility for one is fragility for someone else—Where we introduce the idea that we think too much, do very little—Fail for others to succeed—One day you may get a thank-you note
ANTIFRAGILITY BY LAYERS
This chapter is about error, evolution, and antifragility, with a hitch: it is largely about the errors of others—the antifragility of some comes necessarily at the expense of the fragility of others. In a system, the sacrifices of some units—fragile units, that is, or people—are often necessary for the well-being of other units or the whole. The fragility of every startup is necessary for the economy to be antifragile, and that’s what makes, among other things, entrepreneurship work: the fragility of individual entrepreneurs and their necessarily high failure rate.
So antifragility gets a bit more intricate—and more interesting—in the presence of layers and hierarchies. A natural organism is not a single, final unit; it is composed of subunits and itself may be the subunit of some larger collective. These subunits may be contending with each other. Take another business example. Restaurants are fragile; they compete with each other, but the collective of local restaurants is antifragile for that very reason. Had restaurants been individually robust, hence immortal, the overall business would be either stagnant or weak, and would deliver nothing better than cafeteria food—and I mean Soviet-style cafeteria food. Further, it would be marred with systemic shortages, with, once in a while, a complete crisis and government bailout. All that quality, stability, and reliability are owed to the fragility of the restaurant itself.
So some parts on the inside of a system may be required to be fragile in order to make the system antifragile as a result. Or the organism itself might be fragile, but the information encoded in the genes reproducing it will be antifragile. The point is not trivial, as it is behind the logic of evolution. This applies equally to entrepreneurs and individual scientific researchers.
Further, we mentioned “sacrifice” a few paragraphs ago. Sadly, the benefits of errors are often conferred on others, the collective—as if individuals were designed to make errors for the greater good, not their own. Alas, we tend to discuss mistakes without taking into consideration this layering and transfer of fragility.
Evolution and Unpredictability
I said that the notions of Mithridatization and hormesis were “proto”-antifragility, introductory concepts: they are even a bit naive, and we will need to refine, even transcend them, in order to look at a complex system as a whole. Hormesis is a metaphor; antifragility is a phenomenon.
Primo, Mithridatization and hormesis are just very weak forms of antifragility, with limited gains from volatility, accident, or harm and a certain reversal of the protective or beneficial effect beyond a certain dosage. Hormesis likes only a little bit of disorder, or, rather, needs a little bit of it. They are mostly interesting insofar as their deprivation is harmful, something we don’t get intuitively—our minds cannot easily understand the complicated responses (we think linearly, and these dose-dependent responses are nonlinear). Our linear minds do not like nuances and reduce the information to the binary “harmful” or “helpful.”
Secundo, and that’s the central weakness, they see the organism from the outside and consider it as a whole, a single unit, when things can be a bit more nuanced.
There is a different, stronger variety of antifragility linked to evolution that is beyond hormesis—actually very different from hormesis; it is even its opposite. It can be described as hormesis—getting stronger under harm—if we look from the outside, not from the inside. This other variety of antifragility is evolutionary, and operates at the informational level—genes are information. Unlike with hormesis, the unit does not get stronger in response to stress; it dies. But it accomplishes a transfer of benefits; other units survive—and those that survive have attributes that improve the collective of units, leading to modifications commonly assigned the vague term “evolution” in textbooks and in the New York Times Tuesday science section. So the antifragility of concern here is not so much that of the organisms, inherently weak, but rather that of their genetic code, which can survive them. The code doesn’t really care about the welfare of the unit itself—quite the contrary, since it destroys
many things around it. Robert Trivers figured out the presence of competition between gene and organism in his idea of the “selfish gene.”
In fact, the most interesting aspect of evolution is that it only works because of its antifragility; it is in love with stressors, randomness, uncertainty, and disorder—while individual organisms are relatively fragile, the gene pool takes advantage of shocks to enhance its fitness.
So from this we can see that there is a tension between nature and individual organisms.
Everything alive or organic in nature has a finite life and dies eventually—even Methuselah lived less than a thousand years. But it usually dies after reproducing offspring with a genetic code in one way or another different from that of the parents, with their information modified. Methuselah’s genetic information is still present in Damascus, Jerusalem, and, of course, Brooklyn, New York. Nature does not find its members very helpful after their reproductive abilities are depleted (except perhaps special situations in which animals live in groups, such as the need for grandmothers in the human and elephant domains to assist others in preparing offspring to take charge). Nature prefers to let the game continue at the informational level, the genetic code. So organisms need to die for nature to be antifragile—nature is opportunistic, ruthless, and selfish.
Consider, as a thought experiment, the situation of an immortal organism, one that is built without an expiration date. To survive, it would need to be completely fit for all possible random events that can take place in the environment, all future random events. By some nasty property, a random event is, well, random. It does not advertise its arrival ahead of time, allowing the organism to prepare and make adjustments to sustain shocks. For an immortal organism, pre-adaptation for all such events would be a necessity. When a random event happens, it is already too late to react, so the organism should be prepared to withstand the shock, or say goodbye. We saw that our bodies overshoot a bit in response to stressors, but this remains highly insufficient; they still can’t see the future. They can prepare for the next war, but not win it. Post-event adaptation, no matter how fast, would always be a bit late.1
Antifragile: Things That Gain from Disorder Page 8