The Best Science Fiction and Fantasy of the Year-Volume Three

Home > Other > The Best Science Fiction and Fantasy of the Year-Volume Three > Page 3
The Best Science Fiction and Fantasy of the Year-Volume Three Page 3

by Jonathan Strahan


  It is not that the turret clocks are running faster. What is happening is that our brains are running slower. The turret clocks are driven by pendulums, whose tempo never varies, or by the flow of mercury through a pipe, which does not change. But our brains rely on the passage of air, and when that air flows more slowly, our thoughts slow down, making the clocks seem to us to run faster.

  I had feared that our brains might be growing slower, and it was this prospect that had spurred me to pursue my auto-dissection. But I had assumed that our cognition engines—while powered by air—were ultimately mechanical in nature, and some aspect of the mechanism was gradually becoming deformed through fatigue, and thus responsible for the slowing. That would have been dire, but there was at least the hope that we might be able to repair the mechanism, and restore our brains to their original speed of operation.

  But if our thoughts were purely patterns of air rather than the movement of toothed gears, the problem was much more serious, for what could cause the air flowing through every person's brain to move less rapidly? It could not be a decrease in the pressure from our filling stations' dispensers; the air pressure in our lungs is so high that it must be stepped down by a series of regulators before reaching our brains. The diminution in force, I saw, must arise from the opposite direction: the pressure of our surrounding atmosphere was increasing.

  How could this be? As soon as the question formed, the only possible answer became apparent: our sky must not be infinite in height. Somewhere above the limits of our vision, the chromium walls surrounding our world must curve inward to form a dome; our universe is a sealed chamber rather than an open well. And air is gradually accumulating within that chamber, until it equals the pressure in the reservoir below.

  This is why, at the beginning of this engraving, I said that air is not the source of life. Air can neither be created nor destroyed; the total amount of air in the universe remains constant, and if air were all that we needed to live, we would never die. But in truth the source of life is a difference in air pressure, the flow of air from spaces where it is thick to those where it is thin. The activity of our brains, the motion of our bodies, the action of every machine we have ever built is driven by the movement of air, the force exerted as differing pressures seek to balance each other out. When the pressure everywhere in the universe is the same, all air will be motionless, and useless; one day we will be surrounded by motionless air and unable to derive any benefit from it.

  We are not really consuming air at all. The amount of air that I draw from each day's new pair of lungs is exactly as much as seeps out through the joints of my limbs and the seams of my casing, exactly as much as I am adding to the atmosphere around me; all I am doing is converting air at high pressure to air at low. With every movement of my body, I contribute to the equalization of pressure in our universe. With every thought that I have, I hasten the arrival of that fatal equilibrium.

  Had I come to this realization under any other circumstance, I would have leapt up from my chair and ran into the streets, but in my current situation—body locked in a restraining bracket, brain suspended across my laboratory—doing so was impossible. I could see the leaves of my brain flitting faster from the tumult of my thoughts, which in turn increased my agitation at being so restrained and immobile. Panic at that moment might have led to my death, a nightmarish paroxysm of simultaneously being trapped and spiraling out of control, struggling against my restraints until my air ran out. It was by chance as much as by intention that my hands adjusted the controls to avert my periscopic gaze from the latticework, so all I could see was the plain surface of my worktable. Thus freed from having to see and magnify my own apprehensions, I was able to calm down. When I had regained sufficient composure, I began the lengthy process of reassembling myself. Eventually I restored my brain to its original compact configuration, reattached the plates of my head, and released myself from the restraining bracket.

  At first the other anatomists did not believe me when I told them what I had discovered, but in the months that followed my initial auto-dissection, more and more of them became convinced. More examinations of people's brains were performed, more measurements of atmospheric pressure were taken, and the results were all found to confirm my claims. The background air pressure of our universe was indeed increasing, and slowing our thoughts as a result.

  There was widespread panic in the days after the truth first became widely known, as people contemplated for the first time the idea that death was inevitable. Many called for the strict curtailment of activities in order to minimize the thickening of our atmosphere; accusations of wasted air escalated into furious brawls and, in some districts, deaths. It was the shame of having caused these deaths, together with the reminder that it would be many centuries yet before our atmosphere's pressure became equal to that of the reservoir underground, that caused the panic to subside. We are not sure precisely how many centuries it will take; additional measurements and calculations are being performed and debated. In the meantime, there is much discussion over how we should spend the time that remains to us.

  One sect has dedicated itself to the goal of reversing the equalization of pressure, and found many adherents. The mechanicians among them constructed an engine that takes air from our atmosphere and forces it into a smaller volume, a process they called "compression." Their engine restores air to the pressure it originally had in the reservoir, and these Reversalists excitedly announced that it would form the basis of a new kind of filling station, one that would—with each lung it refilled—revitalize not only individuals but the universe itself. Alas, closer examination of the engine revealed its fatal flaw. The engine itself is powered by air from the reservoir, and for every lungful of air that it produces, the engine consumes not just a lungful, but slightly more. It does not reverse the process of equalization, but like everything else in the world, exacerbates it.

  Although some of their adherents left in disillusionment after this setback, the Reversalists as a group were undeterred, and began drawing up alternate designs in which the compressor was powered instead by the uncoiling of springs or the descent of weights. These mechanisms fared no better. Every spring that is wound tight represents air released by the person who did the winding; every weight that rests higher than ground level represents air released by the person who did the lifting. There is no source of power in the universe that does not ultimately derive from a difference in air pressure, and there can be no engine whose operation will not, on balance, reduce that difference.

  The Reversalists continue their labors, confident that they will one day construct an engine that generates more compression than it uses, a perpetual power source that will restore to the universe its lost vigor. I do not share their optimism; I believe that the process of equalization is inexorable. Eventually, all the air in our universe will be evenly distributed, no denser or more rarefied in one spot than in any other, unable to drive a piston, turn a rotor, or flip a leaf of gold foil. It will be the end of pressure, the end of motive power, the end of thought. The universe will have reached perfect equilibrium.

  Some find irony in the fact that a study of our brains revealed to us not the secrets of the past, but what ultimately awaits us in the future. However, I maintain that we have indeed learned something important about the past. The universe began as an enormous breath being held. Who knows why, but whatever the reason, I am glad that it did, because I owe my existence to that fact. All my desires and ruminations are no more and no less than eddy currents generated by the gradual exhalation of our universe. And until this great exhalation is finished, my thoughts live on.

  So that our thoughts may continue as long as possible, anatomists and mechanicians are designing replacements for our cerebral regulators, capable of gradually increasing the air pressure within our brains and keeping it just higher than the surrounding atmospheric pressure. Once these are installed, our thoughts will continue at roughly the same speed even as the air thickens around
us. But this does not mean that life will continue unchanged. Eventually the pressure differential will fall to such a level that our limbs will weaken and our movements will grow sluggish. We may then try to slow our thoughts so that our physical torpor is less conspicuous to us, but that will also cause external processes to appear to accelerate. The ticking of clocks will rise to a chatter as their pendulums wave frantically; falling objects will slam to the ground as if propelled by springs; undulations will race down cables like the crack of a whip.

  At some point our limbs will cease moving altogether. I cannot be certain of the precise sequence of events near the end, but I imagine a scenario in which our thoughts will continue to operate, so that we remain conscious but frozen, immobile as statues. Perhaps we'll be able to speak for a while longer, because our voice boxes operate on a smaller pressure differential than our limbs, but without the ability to visit a filling station, every utterance will reduce the amount of air left for thought, and bring us closer to the moment that our thoughts cease altogether. Will it be preferable to remain mute to prolong our ability to think, or to talk until the very end? I don't know.

  Perhaps a few of us, in the days before we cease moving, will be able to connect our cerebral regulators directly to the dispensers in the filling stations, in effect replacing our lungs with the mighty lung of the world. If so, those few will be able to remain conscious right up to the final moments before all pressure is equalized. The last bit of air pressure left in our universe will be expended driving a person's conscious thought.

  And then, our universe will be in a state of absolute equilibrium. All life and thought will cease, and with them, time itself.

  But I maintain a slender hope.

  Even though our universe is enclosed, perhaps it is not the only air chamber in the infinite expanse of solid chromium. I speculate that there could be another pocket of air elsewhere, another universe besides our own that is even larger in volume. It is possible that this hypothetical universe has the same or higher air pressure as ours, but suppose that it had a much lower air pressure than ours, perhaps even a true vacuum?

  The chromium that separates us from this supposed universe is too thick and too hard for us to drill through, so there is no way we could reach it ourselves, no way to bleed off the excess atmosphere from our universe and regain motive power that way. But I fantasize that this neighboring universe has its own inhabitants, ones with capabilities beyond our own. What if they were able to create a conduit between the two universes, and install valves to release air from ours? They might use our universe as a reservoir, running dispensers with which they could fill their own lungs, and use our air as a way to drive their own civilization.

  It cheers me to imagine that the air that once powered me could power others, to believe that the breath that enables me to engrave these words could one day flow through someone else's body. I do not delude myself into thinking that this would be a way for me to live again, because I am not that air, I am the pattern that it assumed, temporarily. The pattern that is me, the patterns that are the entire world in which I live, would be gone.

  But I have an even fainter hope: that those inhabitants not only use our universe as a reservoir, but that once they have emptied it of its air, they might one day be able to open a passage and actually enter our universe as explorers. They might wander our streets, see our frozen bodies, look through our possessions, and wonder about the lives we led.

  Which is why I have written this account. You, I hope, are one of those explorers. You, I hope, found these sheets of copper and deciphered the words engraved on their surfaces. And whether or not your brain is impelled by the air that once impelled mine, through the act of reading my words, the patterns that form your thoughts become an imitation of the patterns that once formed mine. And in that way I live again, through you.

  Your fellow explorers will have found and read the other books that we left behind, and through the collaborative action of your imaginations, my entire civilization lives again. As you walk through our silent districts, imagine them as they were; with the turret clocks striking the hours, the filling stations crowded with gossiping neighbors, criers reciting verse in the public squares and anatomists giving lectures in the classrooms. Visualize all of these the next time you look at the frozen world around you, and it will become, in your minds, animated and vital again.

  I wish you well, explorer, but I wonder: Does the same fate that befell me await you? I can only imagine that it must, that the tendency toward equilibrium is not a trait peculiar to our universe but inherent in all universes. Perhaps that is just a limitation of my thinking, and your people have discovered a source of pressure that is truly eternal. But my speculations are fanciful enough already. I will assume that one day your thoughts too will cease, although I cannot fathom how far in the future that might be. Your lives will end just as ours did, just as everyone's must. No matter how long it takes, eventually equilibrium will be reached.

  I hope you are not saddened by that awareness. I hope that your expedition was more than a search for other universes to use as reservoirs. I hope that you were motivated by a desire for knowledge, a yearning to see what can arise from a universe's exhalation. Because even if a universe's lifespan is calculable, the variety of life that is generated within it is not. The buildings we have erected, the art and music and verse we have composed, the very lives we've led: none of them could have been predicted, because none of them were inevitable. Our universe might have slid into equilibrium emitting nothing more than a quiet hiss. The fact that it spawned such plenitude is a miracle, one that is matched only by your universe giving rise to you.

  Though I am long dead as you read this, explorer, I offer to you a valediction. Contemplate the marvel that is existence, and rejoice that you are able to do so. I feel I have the right to tell you this because, as I am inscribing these words, I am doing the same.

  Shoggoths In Bloom

  Elizabeth Bear

  Elizabeth Bear was born on the same day as Frodo and Bilbo Baggins, but in a different year. She lives in West Hartford, Connecticut, with a presumptuous cat and a selection of struggling houseplants. Her first short fiction appeared in 1996, and was quickly followed by ten novels and nearly fifty short stories. Her most recent book is novel All the Windwracked Stars. Bear's "Jenny Casey" trilogy won the Locus Award for Best First Novel, and she won the John W. Campbell Award for Best New Writer in 2005. She is also a Hugo and Sturgeon award recipient.

  "Well, now, Professor Harding," the fisherman says, as his Bluebird skips across Penobscot Bay, "I don't know about that. The jellies don't trouble with us, and we don't trouble with them."

  He's not much older than forty, but wizened, his hands work-roughened and his face reminiscent of saddle leather, in texture and in hue. Professor Harding's age, and Harding watches him with concealed interest as he works the Bluebird's engine. He might be a veteran of the Great War, as Harding is.

  He doesn't mention it. It wouldn't establish camaraderie: they wouldn't have fought in the same units or watched their buddies die in the same trenches.

  That's not the way it works, not with a Maine fisherman who would shake his head and not extend his hand to shake, and say, between pensive chaws on his tobacco, "Doctor Harding? Well, huh. I never met a colored professor before," and then shoot down all of Harding's attempts to open conversation about the near-riots provoked by a fantastical radio drama about an alien invasion of New York City less than a fortnight before.

  Harding's own hands are folded tight under his armpits so the fisherman won't see them shaking. He's lucky to be here. Lucky anyone would take him out. Lucky to have his tenure-track position at Wilberforce, which he is risking right now.

  The bay is as smooth as a mirror, the Bluebird's wake cutting it like a stroke of chalk across slate. In the peach-sorbet light of sunrise, a cluster of rocks glistens. The boulders themselves are black, bleak, sea-worn and ragged. But over them, the light refracts throu
gh a translucent layer of jelly, mounded six feet deep in places, glowing softly in the dawn. Rising above it, the stalks are evident as opaque silhouettes, each nodding under the weight of a fruiting body.

  Harding catches his breath. It's beautiful. And deceptively still, for whatever the weather may be, beyond the calm of the bay, across the splintered gray Atlantic, farther than Harding—or anyone—can see, a storm is rising in Europe.

  Harding's an educated man, well-read, and he's the grandson of Nathan Harding, the buffalo soldier. An African-born ex-slave who fought on both sides of the Civil War, when Grampa Harding was sent to serve in his master's place, he deserted, and lied, and stayed on with the Union Army after.

  Like his grandfather, Harding was a soldier. He's not a historian, but you don't have to be to see the signs of war.

  "No contact at all?" he asks, readying his borrowed Leica camera.

  "They clear out a few pots," the fisherman says, meaning lobster pots. "But they don't damage the pot. Just flow around it and digest the lobster inside. It's not convenient." He shrugs. It's not convenient, but it's not a threat either. These Yankees never say anything outright if they think you can puzzle it out from context.

  "But you don't try to do something about the shoggoths?"

  While adjusting the richness of the fuel mixture, the fisherman speaks without looking up. "What could we do to them? We can't hurt them. And lord knows, I wouldn't want to get one's ire up."

  "Sounds like my department head," Harding says, leaning back against the gunwale, feeling like he's taking an enormous risk. But the fisherman just looks at him curiously, as if surprised the talking monkey has the ambition or the audacity to joke.

 

‹ Prev