At this point, however, Dr. Pickett and his associates struck out on a new road instead of going along with other entomologists who continued to pursue the will-o'-the-wisp of the ever more toxic chemical. Recognizing that they had a strong ally in nature, they devised a program that makes maximum use of natural controls and minimum use of insecticides. Whenever insecticides are applied only minimum dosages are used—barely enough to control the pest without avoidable harm to beneficial species. Proper timing also enters in. Thus, if nicotine sulphate is applied before rather than after the apple blossoms turn pink one of the important predators is spared, probably because it is still in the egg stage.
Dr. Pickett uses special care to select chemicals that will do as little harm as possible to insect parasites and predators. "When we reach the point of using DDT, parathion, chlordane, and other new insecticides as routine control measures in the same way we have used the inorganic chemicals in the past, entomologists interested in biological control may as well throw in the sponge," he says. Instead of these highly toxic, broad-spectrum insecticides, he places chief reliance on ryania (derived from ground stems of a tropical plant), nicotine sulphate, and lead arsenate. In certain situations very weak concentrations of DDT or malathion are used (1 or 2 ounces per 100 gallons—in contrast to the usual 1 or 2 pounds per 100 gallons). Although these two are the least toxic of the modern insecticides, Dr. Pickett hopes by further research to replace them with safer and more selective materials.
How well has this program worked? Nova Scotia orchardists who are following Dr. Pickett's modified spray program are producing as high a proportion of first-grade fruit as are those who are using intensive chemical applications. They are also getting as good production. They are getting these results, moreover, at a substantially lower cost. The outlay for insecticides in Nova Scotia apple orchards is only from 10 to 20 per cent of the amount spent in most other apple-growing areas.
More important than even these excellent results is the fact that the modified program worked out by these Nova Scotian entomologists is not doing violence to nature's balance. It is well on the way to realizing the philosophy stated by the Canadian entomologist G. C. Ullyett a decade ago: "We must change our philosophy, abandon our attitude of human superiority and admit that in many cases in natural environments we find ways and means of limiting populations of organisms in a more economical way than we can do it ourselves."
16. The Rumblings of an Avalanche
IF DARWIN were alive today the insect world would delight and astound him with its impressive verification of his theories of the survival of the fittest. Under the stress of intensive chemical spraying the weaker members of the insect populations are being weeded out. Now, in many areas and among many species only the strong and fit remain to defy our efforts to control them.
Nearly half a century ago, a professor of entomology at Washington State College, A. L. Melander, asked the now purely rhetorical question, "Can insects become resistant to sprays?" If the answer seemed to Melander unclear, or slow in coming, that was only because he asked his question too soon—in 1914 instead of 40 years later. In the pre-DDT era, inorganic chemicals, applied on a scale that today would seem extraordinarily modest, produced here and there strains of insects that could survive chemical spraying or dusting. Melander himself had run into difficulty with the San José scale, for some years satisfactorily controlled by spraying with lime sulfur. Then in the Clarkston area of Washington the insects became refractory—they were harder to kill than in the orchards of the Wenatchee and Yakima valleys and elsewhere.
Suddenly the scale insects in other parts of the country seemed to have got the same idea: it was not necessary for them to die under the sprayings of lime sulfur, diligently and liberally applied by orchardists. Throughout much of the Midwest thousands of acres of fine orchards were destroyed by insects now impervious to spraying.
Then in California the time-honored method of placing canvas tents over trees and fumigating them with hydrocyanic acid began to yield disappointing results in certain areas, a problem that led to research at the California Citrus Experiment Station, beginning about 1915 and continuing for a quarter of a century. Another insect to learn the profitable way of resistance was the codling moth, or appleworm, in the 1920's, although lead arsenate had been used successfully against it for some 40 years.
But it was the advent of DDT and all its many relatives that ushered in the true Age of Resistance. It need have surprised no one with even the simplest knowledge of insects or of the dynamics of animal populations that within a matter of a very few years an ugly and dangerous problem had clearly defined itself. Yet awareness of the fact that insects possess an effective counterweapon to aggressive chemical attack seems to have dawned slowly. Only those concerned with disease-carrying insects seem by now to have been thoroughly aroused to the alarming nature of the situation; the agriculturists still for the most part blithely put their faith in the development of new and ever more toxic chemicals, although the present difficulties have been born of just such specious reasoning.
If understanding of the phenomenon of insect resistance developed slowly, it was far otherwise with resistance itself. Before 1945 only about a dozen species were known to have developed resistance to any of the pre-DDT insecticides. With the new organic chemicals and new methods for their intensive application, resistance began a meteoric rise that reached the alarming level of 137 species in 1960. No one believes the end is in sight. More than 1000 technical papers have now been published on the subject. The World Health Organization has enlisted the aid of some 300 scientists in all pans of the world, declaring that "resistance is at present the most important single problem facing vector-control programmes." A distinguished British student of animal populations, Dr. Charles Elton, has said, "We are hearing the early rumblings of what may become an avalanche in strength."
Sometimes resistance develops so rapidly that the ink is scarcely dry on a report hailing successful control of a species with some specified chemical when an amended report has to be issued. In South Africa, for example, cattlemen had long been plagued by the blue tick, from which, on one ranch alone, 600 head of cattle had died in one year. The tick had for some years been resistant to arsenical dips. Then benzene hexachloride was tried, and for a very short time all seemed to be well. Reports issued early in the year 1949 declared that the arsenic-resistant ticks could be controlled readily with the new chemical; later in the same year, a bleak notice of developing resistance had to be published. The situation prompted a writer in the Leather Trades Review to comment in 1950: "News such as this quietly trickling through scientific circles and appearing in small sections of the overseas press is enough to make headlines as big as those concerning the new atomic bomb if only the significance of the matter were properly understood."
Although insect resistance is a matter of concern in agriculture and forestry, it is in the field of public health that the most serious apprehensions have been felt. The relation between various insects and many diseases of man is an ancient one. Mosquitoes of the genus Anopheles may inject into the human bloodstream the single-celled organism of malaria. Other mosquitoes transmit yellow fever. Still others carry encephalitis. The housefly, which does not bite, nevertheless by contact may contaminate human food with the bacillus of dysentery, and in many parts of the world may play an important part in the transmission of eye diseases. The list of diseases and their insect carriers, or vectors, includes typhus and body lice, plague and rat fleas, African sleeping sickness and tsetse flies, various fevers and ticks, and innumerable others.
These are important problems and must be met. No responsible person contends that insect-borne disease should be ignored. The question that has now urgently presented itself is whether it is either wise or responsible to attack the problem by methods that are rapidly making it worse. The world has heard much of the triumphant war against disease through the control of insect vectors of infection, but it has heard little
of the other side of the story—the defeats, the short-lived triumphs that now strongly support the alarming view that the insect enemy has been made actually stronger by our efforts. Even worse, we may have destroyed our very means of fighting.
A distinguished Canadian entomologist, Dr. A. W. A. Brown, was engaged by the World Health Organization to make a comprehensive survey of the resistance problem. In the resulting monograph, published in 1958, Dr. Brown has this to say: "Barely a decade after the introduction of the potent synthetic insecticides in public health programmes, the main technical problem is the development of resistance to them by the insects they formerly controlled." In publishing his monograph, the World Health Organization warned that "the vigorous offensive now being pursued against arthropod-borne diseases such as malaria, typhus fever, and plague risks a serious setback unless this new problem can be rapidly mastered."
What is the measure of this setback? The list of resistant species now includes practically all of the insect groups of medical importance. Apparently the blackflies, sand flies, and tsetse flies have not yet become resistant to chemicals. On the other hand, resistance among houseflies and body lice has now developed on a global scale. Malaria programs are threatened by resistance among mosquitoes. The oriental rat flea, the principal vector of plague, has recently demonstrated resistance to DDT, a most serious development. Countries reporting resistance among a large number of other species represent every continent and most of the island groups.
Probably the first medical use of modern insecticides occurred in Italy in 1943 when the Allied Military Government launched a successful attack on typhus by dusting enormous numbers of people with DDT. This was followed two years later by extensive application of residual sprays for the control of malaria mosquitoes. Only a year later the first signs of trouble appeared. Both houseflies and mosquitoes of the genus Culex began to show resistance to the sprays. In 1948 a new chemical, chlordane, was tried as a supplement to DDT. This time good control was obtained for two years, but by August of 1950 chlordane-resistant flies appeared, and by the end of that year all of the houseflies as well as the Culex mosquitoes seemed to be resistant to chlordane. As rapidly as new chemicals were brought into use, resistance developed. By the end of 1951, DDT, methoxychlor, chlordane, heptachlor, and benzene hexachloride had joined the list of chemicals no longer effective. The flies, meanwhile, had become "fantastically abundant."
The same cycle of events was being repeated in Sardinia during the late 1940's. In Denmark, products containing DDT were first used in 1944; by 1947 fly control had failed in many places. In some areas of Egypt, flies had already become resistant to DDT by 1948; BHC was substituted but was effective for less than a year. One Egyptian village in particular symbolizes the problem. Insecticides gave good control of flies in 1950 and during this same year the infant mortality rate was reduced by nearly 50 per cent. The next year, nevertheless, flies were resistant to DDT and chlordane. The fly population returned to its former level; so did infant mortality.
In the United States, DDT resistance among flies had become widespread in the Tennessee Valley by 1948. Other areas followed. Attempts to restore control with dieldrin met with little success, for in some places the flies developed strong resistance to this chemical within only two months. After running through all the available chlorinated hydrocarbons, control agencies turned to the organic phosphates, but here again the story of resistance was repeated. The present conclusion of experts is that "housefly control has escaped insecticidal techniques and once more must be based on general sanitation."
The control of body lice in Naples was one of the earliest and most publicized achievements of DDT. During the next few years its success in Italy was matched by the successful control of lice affecting some two million people in Japan and Korea in the winter of 1945–46. Some premonition of trouble ahead might have been gained by the failure to control a typhus epidemic in Spain in 1948. Despite this failure in actual practice, encouraging laboratory experiments led entomologists to believe lice were unlikely to develop resistance. Events in Korea in the winter of 1950–51 were therefore startling. When DDT powder was applied to a group of Korean soldiers the extraordinary result was an actual increase in the infestation of lice. When lice were collected and tested, it was found that 5 per cent DDT powder caused no increase in their natural mortality rate. Similar results among lice collected from vagrants in Tokyo, from an asylum in Itabashi, and from refugee camps in Syria, Jordan, and eastern Egypt, confirmed the ineffectiveness of DDT for the control of lice and typhus. When by 1957 the list of countries in which lice had become resistant to DDT was extended to include Iran, Turkey, Ethiopia, West Africa, South Africa, Peru, Chile, France, Yugoslavia, Afghanistan, Uganda, Mexico, and Tanganyika, the initial triumph in Italy seemed dim indeed.
The first malaria mosquito to develop resistance to DDT was Anopheles sacharovi in Greece. Extensive spraying was begun in 1946 with early success; by 1949, however, observers noticed that adult mosquitoes were resting in large numbers under road bridges, although they were absent from houses and stables that had been treated. Soon this habit of outside resting was extended to caves, outbuildings, and culverts and to the foliage and trunks of orange trees. Apparently the adult mosquitoes had become sufficiently tolerant of DDT to escape from sprayed buildings and rest and recover in the open. A few months later they were able to remain in houses, where they were found resting on treated walls.
This was a portent of the extremely serious situation that has now developed. Resistance to insecticides by mosquitoes of the anophelene group has surged upward at an astounding rate, being created by the thoroughness of the very house-spraying programs designed to eliminate malaria. In 1956, only 5 species of these mosquitoes displayed resistance; by early 1960 the number had risen from 5 to 28! The number includes very dangerous malaria vectors in West Africa, the Middle East, Central America, Indonesia, and the eastern European region.
Among other mosquitoes, including carriers of other diseases, the pattern is being repeated. A tropical mosquito that carries parasites responsible for such diseases as elephantiasis has become strongly resistant in many parts of the world. In some areas of the United States the mosquito vector of western equine encephalitis has developed resistance. An even more serious problem concerns the vector of yellow fever, for centuries one of the great plagues of the world. Insecticide-resistant strains of this mosquito have occurred in Southeast Asia and are now common in the Caribbean region.
The consequences of resistance in terms of malaria and other diseases are indicated by reports from many parts of the world. An outbreak of yellow fever in Trinidad in 1954 followed failure to control the vector mosquito because of resistance. There has been a flare-up of malaria in Indonesia and Iran. In Greece, Nigeria, and Liberia the mosquitoes continue to harbor and transmit the malaria parasite. A reduction of diarrheal disease achieved in Georgia through fly control was wiped out within about a year. The reduction in acute conjunctivitis in Egypt, also attained through temporary fly control, did not last beyond 1950.
Less serious in terms of human health, but vexatious as man measures economic values, is the fact that salt-marsh mosquitoes in Florida also are showing resistance. Although these are not vectors of disease, their presence in bloodthirsty swarms had rendered large areas of coastal Florida uninhabitable until control—of an uneasy and temporary nature—was established. But this was quickly lost.
The ordinary house mosquito is here and there developing resistance, a fact that should give pause to many communities that now regularly arrange for wholesale spraying. This species is now resistant to several insecticides, among which is the almost universally used DDT, in Italy, Israel, Japan, France, and parts of the United States, including California, Ohio, New Jersey, and Massachusetts.
Ticks are another problem. The woodtick, vector of spotted fever, has recently developed resistance; in the brown dog tick the ability to escape a chemical death has long been thorough
ly and widely established. This poses problems for human beings as well as for dogs. The brown dog tick is a semitropical species and when it occurs as far north as New Jersey it must live over winter in heated buildings rather than out of doors. John C. Pallister of the American Museum of Natural History reported in the summer of 1959 that his department had been getting a number of calls from neighboring apartments on Central Park West. "Every now and then," Mr. Pallister said, "a whole apartment house gets infested with young ticks, and they're hard to get rid of. A dog will pick up ticks in Central Park, and then the ticks lay eggs and they hatch in the apartment. They seem immune to DDT or chlordane or most of our modern sprays. It used to be very unusual to have ticks in New York City, but now they're all over here and on Long Island, in Westchester and on up into Connecticut. We've noticed this particularly in the past five or six years."
The German cockroach throughout much of North America has become resistant to chlordane, once the favorite weapon of exterminators who have now turned to the organic phosphates. However, the recent development of resistance to these insecticides confronts the exterminators with the problem of where to go next.
Agencies concerned with vector-borne disease are at present coping with their problems by switching from one insecticide to another as resistance develops. But this cannot go on indefinitely, despite the ingenuity of the chemists in supplying new materials. Dr. Brown has pointed out that we are traveling "a one-way street." No one knows how long the street is. If the dead end is reached before control of disease-carrying insects is achieved, our situation will indeed be critical.
Silent Spring Page 26