What Stays in Vegas

Home > Nonfiction > What Stays in Vegas > Page 33
What Stays in Vegas Page 33

by Adam Tanner


  Government regulation of data, 58–59, 186, 220, 243–246

  GPS tracking (mobile phone location data), 185–188, 239, 265

  Graepel, Thore, 99

  Graf, Steffi, 244–245

  Gramm-Leach-Bliley Act (1999), 65

  Grant, Hugh, 138

  Grant, Susan, 260

  Green, Shane, 225–226, 231–234

  Green Stamps, 23

  Griffin, Beverly and Robert, 127–130

  Griffin Book, 128–130, 136

  Griffin Investigations, 128–130

  Guess Who’s Coming to Dinner movie, 42

  Gupta, Ajay, 85–89

  Gupta, Vinod, 81–83

  Hagerty, Harry, 182, 184

  Hall, Marc, 47

  The Hangover movies, 37, 39, 217

  Harper, Jim, 242

  Harrah’s, 15(fig)

  engages Loveman as COO, 10–14

  financial losses during recession, 91

  WINet loyalty program, 27

  Harrah’s Atlantic City, 14–15, 16, 31

  Harrah’s Kansas City, 176, 179, 193–195, 217

  Hart, Patti, 18–19, 189–190, 216

  Harvard Berkman Center for Internet and Society, 263

  Harvard bomb threat, 263

  Harvard Business School (HBS), 8–12, 98, 187, 206, 220

  The Harvard Crimson, 97–98

  Harvey’s Lake Tahoe, 31–32

  Health care. See Medical data

  Health Insurance Portability and Accountability Act (HIPAA), 108, 244

  Hershiser, Orel, 245

  The Hidden Persuaders (Packard), 237

  High-limit rooms, 95, 198–199, 203

  Hinkley, William, 128

  Hispanics, marketing to, 87, 89

  Hoffman, Dustin, 36

  Holland, Rodney, 179

  Hong Kong, 187

  Hoofnagle, Chris, 242–243

  Hooley, Sean, 105(fig)

  Hooters Casino Hotel, Las Vegas, 128

  Horse racing, 199, 200

  Horseshoe Casino Cincinnati grand opening, 201–203, 204(fig), 205(fig)

  Horseshoe Casinos, 21–22, 174–175

  Howe, Scott, 8, 220–223, 244, 249, 250, 251

  HP (Hewlett Packard), 159, 160

  HTTPS Everywhere, 262

  Hughes, Howard, 42, 43

  Human Rights Campaign, 241

  Hushmail, 264

  Iamcatwalk.com, 164, 169

  IBM, 79, 82, 158, 260

  Identity theft, 245, 267

  Identity.com, 265

  IGT slot machines. See International Game Technology

  Illinois, 51, 144, 145, 148, 152

  Illinois State University, 145

  IMDB, 111

  Imperial Palace, 129

  Inc. Magazine, 169

  Incentives for customers to share personal data, 173, 180, 228, 242

  India, 9–10, 85, 89, 109–110, 227

  Indiana, 7, 246

  Inflection, 61–63, 64(fig), 66–67

  InfoSpace, 59

  InfoUSA, 83

  Inside Edition TV program, 155

  Instagram, 239

  Instant Checkmate, 68–74, 115, 117, 121–122

  Insurance

  auto, 171, 232, 234

  health, 108–109, 244

  life, 105

  Intel, 66

  Intelius, 50, 56–59, 68, 246

  Interactive Advertising Bureau, 169

  Interest groups as aggregated data, 19, 186

  Internal Revenue Service (IRS), 162

  International Game Technology (IGT), 18–19, 189, 216

  Internet

  changes meaning of public, 245

  enables display of mug shots and names, 142

  free services at the price of personal data, 240–243

  as non-transparent, 228

  online anonymity programs, 260

  privacy companies remove damaging reviews, 226, 229

  tools to enhance privacy, 261–263

  Internet advertising

  click fraud pollutes online ad traffic, 163–170

  online behavioral advertising, 157–159

  surfing patterns, tracking, 159–163

  unintended consequences, 248–249

  See also Google ads; Yahoo ads

  Internet erotica, 117–122, 166

  Internet Explorer, 262

  Intolerable Cruelty movie, 36

  Iraq War (2003), 57

  Irvine, California, 63

  Irving, Texas, 79, 151

  Italy, 83

  iView Systems, 131

  Ixquick, 264–265

  Jablon, Joshua, 76

  Jackson, Michael, 138, 245

  Jagger, Mick, 138

  Jain, Naveen, 57, 59

  Java software, 262

  JavaScript, 262

  Jernigan, Carter, 101

  Jobs, Steve, 232

  Johnson, Gerald, II, 87

  Jolie, Angelina, 47

  JPMorgan Chase, 252

  Jumptap, 186

  Kansas City, Missouri, 176, 179, 193, 217

  Kanter, Joshua

  background, 75–76

  on geographic segments, 217

  hired as Caesars’ personal data guru, 93–96

  revamps no outside data policy, 188–189, 210–214(fig), 253–254

  revamps Total Awards, 176–179

  on slot machines, 189

  Sunshine Test, 213–214(fig), 251

  on third-party access to customers’ data, 182–183

  Khuzami, Robert, 83

  Kibak, Kris, 69–73, 122

  Kiev, Ukraine, 58, 66–67

  King, Martin Luther, Jr, 137–138

  Kinsey Institute, 248

  Kivilis, Netta, 238–239

  Kosinski, Michal, 99–100

  Kostel, Daniel, 36–40, 171–172, 175, 176, 196–200

  Koster, John, 178

  Kristen Bright (imaginary Instant Checkmate spokesperson), 72, 115–122

  Kurspahic, Tarik, 231–234

  LA Times, 55

  LaBarba, Janet, 143–144, 150

  Ladies’ Home Journal, 172

  Laine, Frankie, 32

  Lake Tahoe casinos, 23, 31, 185–186

  Lansky, Meyer, 43

  LaRue, Eddie, 22, 32, 43–45

  Las Vegas, 2(fig), 5(fig)

  Boulevard, 4, 36, 209

  Clark County Recorder’s office, 47–49, 62–63, 244–245

  as data collection machine, 4–6

  post-9/11, 1–2

  See also Casinos

  Las Vegas Police, 134–135, 153–154, 245

  Las Vegas Sands Corporation, 216

  Lavabit, 264

  Lawsuits

  against casinos, Griffin, 129–130

  class-actions against data brokers, 59–60

  curtail security, personal data traffic, 130, 151–152

  against mug shot websites, 73, 154–155

  for privacy breaches, 111–112, 246

  Leighton, Robert, 258

  Leonsis, Ted, 232

  Lewis, Harry, 97–98, 118, 136

  Lexis, 48

  LexisNexis, 267

  License plate recognition, 132, 247–248

  Lillian, Donna, 86–87, 88

  LinkedIn profiles, 104, 107, 227, 265

  List Service Direct, 89

  Localytics, 187

  LocatePlus Holdings Corporation, 60

  Lombardi, Rick, 65

  Los Angeles, 36, 48, 49, 117, 169, 175, 226

  Loveman, Gary, 13(fig), 205(fig)

  background, 4–14

  on casino perks and incentives, 172, 197–198

  cell phone ads based on location data, 187

  on changes due to financial crisis, 91–92, 175

  on data analytics’ strengths, limitations, 10–11, 18, 214–216

  on debt issues vs. operations, 203–206

  on direct marketing, 76

  on gathering personal data, targeting, 35,
77–78, 90, 174, 217–219

  on Total Rewards revamp, 179

  on usability of photo recognition, 132–133

  Lowrey, Thomas, IV, 73

  Loyalty programs

  of airlines, 24–25, 219, 232

  cards used for security and surveillance, 124

  compared to mobile phone customer tracking, 188

  data not shared with others, 250–251

  early slot machine point tickets, 23

  enable collection of personal data, 17–18

  Godiva, 173

  incentives for customers to share personal data, 171–173

  stolen cards scheme revealed by Facebook, 135–136

  See also Total Rewards loyalty program

  LSSiDATA, 65

  Luxor, 209

  Macau operating licenses, 214–216

  Mail-order businesses, 77–78

  Malaysia, 246

  Malware, 166, 262

  Mandalay Bay Hotel, Las Vegas, 84, 209

  Manes, Justin, 168

  Manhattan, 31, 78, 149, 163, 227

  Map Network, 231

  Marcus, Richard, 129

  Marijuana, 106, 107, 144–148

  Marriage and divorce data, 5–6, 47–49, 63, 245

  Marsden, M. K., 244

  Martin, Dean, 21

  MaskMe, 264

  Mason, Matthew, 243

  Massachusetts Group Insurance Commission (GIC), 102

  Massachusetts Institute of Technology (MIT), 7, 16, 101, 102, 128–129

  MasterCard, 266

  Maxvisits.com, 168

  McElroy, James, 94–96

  McKinsey & Company, 94–95

  Media6Degrees, 159

  MediaMorphosis, 89

  Medical data

  collected by data brokers, 244

  imported into consumers’ own managed vaults, 253

  names revealed, 101–108

  of PGP volunteers, 247, 259

  Memphis, Tennessee, 11, 31

  Merchant-funded rewards, 183

  MGM Grand Hotel, 3, 77

  MGM Resorts, 77, 130, 135, 182–188

  Microsoft, 98, 99, 159, 162, 220

  Milgram, Stanley, 98

  Miller, Rob, 50

  Mirage Hotel and Casino, 7–8, 186, 216

  Mirman, Rich, 27–30, 94, 188, 216, 221–222

  Misaldo movie, 231

  Mistree, Behram, 101

  MIT blackjack card counters, 128–129

  Mob figures and mob influence, 43–45, 130, 132

  Mob Museum, 137–138

  Mobile data, 185–186, 265

  Moglen, Eben, 260

  Monahan, Brian, 51, 54–62, 67–68, 265

  Monahan, Matthew, 51–62, 65–68, 74, 244, 265

  Monet, Yvette, 187

  Monte Carlo, 7

  Montgomery Ward, 78

  Moore, James, 131

  Moore, Les, 151

  Moral and ethical considerations of data brokering, 40, 50, 152, 188, 220

  Moscow, 110

  Movie rating system of Netflix, 109–111

  Mug shots

  background, 137–138

  displayed by Busted!/bustedmugshots.com, 140–144, 149–155

  Janet LaBarba case, 143–144, 150

  Paola Roy case, 138–140, 150

  taken of Kyle Prall, 146, 149(fig)

  used in Instant Checkmate ads, 72–74

  Multicultural marketing, 86, 89

  Multi-mailing company, 78

  Munger, Charlie, 52, 53

  Mydex.org, 234

  Myinfosafedirect.com, 234

  MyLife.com, 49–50, 59–60

  MyPersonality, 99, 101

  MyPOQ, 262

  Names as valuable data, 85–89, 170, 173–174

  Narayanan, Arvind, 109–111

  Native Americans, marketing to, 87, 88

  Nebraska, 52, 81–82, 84, 162

  Nebraska Game and Parks Commission, 162

  Nersesian, Bob, 129

  Netflix, 71–72, 109–112

  Nevada Legal News, 43–44

  Nevada State Gaming Control Board, 127

  New Jersey, 31, 75–76, 175

  New Orleans, 11

  New York, 61, 93–94, 149, 157–159, 169

  New York Times, 112, 160, 162, 246, 261

  New York University, 158

  New York-New York casino, Las Vegas, 134, 135, 209

  New Zealand, 246

  Newman, Paul, 47

  Newspaper archives, 42–45

  Nike (nike.com), 164, 231

  9/11 attacks. See September 11, 2001, attacks

  Nokia, 162, 231–232

  Nonprofit organizations, 59, 79, 80–81

  Norlin, Chase, 167–169

  Norton, David, 12–13, 30–32, 91–92, 94

  NoScript, 260, 262–263

  NSA. See US National Security Agency

  Obama, Barack, 3, 86, 88

  Ocean’s Eleven movie, 21, 124

  Ocner, Daniel, 89

  Odds

  better in high-limit rooms, 198

  for blackjack vs. slot machines, 175

  Off Pocket, 265

  Ogilvy and Mather advertising firm, 235

  Ohio, 78, 201

  Omaha, Nebraska, 52–53, 66, 83, 84

  Onion Browser, 263

  Online behavioral advertising, 157, 159–160, 164

  Online surveys, 80, 84, 88, 90, 103–104, 242, 248

  Open records laws, 141, 151

  Opportunity segments, 27, 29(chart)

  Opting out of personal data sharing

  Acxiom’s AboutTheData files, 222–223

  for credit cards, financial institutions, 266

  from data brokers, 252, 267–268

  multiple removals vs. one-stop removals, 246

  from online advertisers, 263

  of PeopleSmart, 67

  search engine results, 155

  of sharing gambling transaction data, 182

  Oracle, 66

  Orbot, 263

  The Outfit, 44–45

  Outside data

  availability to consumers, 252

  Caesars’ policy against use, 40, 74, 90

  Caesars’ policy revamped, 210–214, 253–254

  Ownyourinfo.com, 234

  Packard, Vance, 237

  Palo Alto, California, 56

  Pancer, Andrew, 164

  Papp, Jamie, 201

  Parentingnews.com, 164

  Pasadena, California, 49

  Patient Privacy Rights Foundation, 108

  Peel, Deborah, 108–109

  Pennsylvania, 78, 93, 133

  People search sites, 56–63, 66–67, 239, 267

  Peoplefinders.com, 50

  PeopleSmart

  cell phone numbers not listed, 66–67

  compared to Instant Checkmate, 69, 72

  differentiated by respecting privacy, 50, 61–63

  Perlich, Claudia, 157–166, 169, 222

  Permissions granted/not granted

  to collect personal consumer data, 40, 85, 219–223, 228

  under Fair Credit Reporting Act, 73–74

  for patients’ health records, 108

  to send email messages, 79

  for tapping into social media profiles, 99, 101

  to use persons’ images, 117, 120, 122

  Personal data

  abuse of, 99, 235, 237–238, 252

  allowing individuals to be identified, 101–107

  Caesars’ policy of informing customers, 36, 39, 171, 249

  controlled by consumers (see Control of personal data by consumers; Privacy companies)

  gathered by the Mob, 43–45, 46

  gathering procedures, 33–34

  integrated into future slot machines, 189–190

  limitations, 252–253

  from online surveys, 84

  privacy risks, 241, 259

  used for individualized targeted offers, 39, 77, 217–219

  See also Data brokers; Pu
blic records as personal data sources

  Personal data vaults, 225–230, 234, 243, 253, 268

  Personal Genome Project (PGP), 103–107, 246, 259

  Personal.com

  background, 225–226, 229–230

  considers credit card without gathering personal data, 266

  encrypts user data, sharing only with permission, 232–233, 268

  Fill It browser plug-in, 234

  Pesci, Joe, 43

  Pfahler, Mike, 133–134

  PGP. See Personal Genome Project

  Pharmacies selling personal data, 108

  Phillips, John, 88–89

  Phillips, Tom, 162–163, 166–167

  Phone book information, 43, 63, 78, 80–82, 262

  Photo recognition technology, 5, 127, 131–134, 253, 260

  Pilant, Darrell, 178

  Pinker, Steven, 105–106

  PlayStation, 242

  Pleitez, Emanuel, 59, 225–226, 239

  Poitier, Sidney, 42

  Poker, 129, 179, 201

  Poland under Communism, 99–100

  Political campaigns using personal data, 88–90, 246, 251

  Political data, 80, 85, 99, 222–223

  Porn sites, 76, 166, 228–229

  Prall, Kyle, 154(fig)

  background and criminal record, 144–149(fig)

  launches, runs, mug shot site, 140–144, 149–155

  views Acxiom file, 222

  Predictive modeling, 158, 161

  Prepaid cashless cards, 184–185

  Presley, Elvis, 42, 43, 47

  Presley, Priscilla Ann Beaulieu, 42

  Price, Melissa, 201

  Prime Access, 89

  Prince Harry, 243

  Privacy

  and mobile phone location tracking, 186, 188, 190

  requires consumer awareness, management, 242

  sacrificed for free services, 240–243

  standards or violations using Internet, 100–101

  See also Control of personal data by consumers

  Privacy companies, 225–235, 245

  Privacy policies of companies

  Google, 263

  long, confusing statements, 103–104, 250

  MyLife.com, 60

  nutrition-label-style notices, 250, 260

  tracking revealed in fine print, 162

  Privacy protection laws in other countries, 246

  Privacy protection methods and strategies, 246, 260–268. See also Government regulation of data

  Privacy rights, 107–113, 249

  Privacy Rights Clearinghouse, 266, 267, 268

  Privacy risks exam of PGP, 103–104

  Privacy tools, 235, 260–261, 268

  Privacychoice.org, 265

  Private investigators, 42–45, 46

  Private WiFi, 262

  Privowny.com, 264

  Productivity Paradox of computers, 10

  Profiles of gamblers

  of big spenders, 32

  of Harrah’s top-tier customers, 193–195

  of repeat customers, 31, 175

  Protecting Your Internet Identity (Claypoole), 248

  Public records as personal data sources

  background, 42–45

  bulk access for data brokers, 244–245

  digitization, 46–49

 

‹ Prev