by Ben R Rich
Several of our aerodynamics experts, including Dick Cantrell, seriously thought that maybe we would do better trying to build an actual flying saucer. The shape itself was the ultimate in low observability. The problem was finding ways to make a saucer fly. Unlike our plates, it would have to be rotated and spun. But how? The Martians wouldn’t tell us.
During those early months of the Hopeless Diamond, I dug in my heels. I forced our in-house doubters to sit down with Denys and receive a crash course on Stealth 101. That helped to improve their confidence quotient somewhat, and although I acted as square-shouldered as Harry Truman challenging the Republican Congress, deep down I was suffering bouts of angst myself, wondering if Kelly and some of the other skeptics had it right while I was being delusional. I kept telling myself that the financial and personal risks in pursuing this project were minimal compared to its enormous military and financial potential. But the politics of the situation had me worried: stealth would have been a perfect third project for me, after two reassuring successes under my belt.
But if stealth failed, I could hear several of my corporate bosses grousing: “What’s with Rich? Is he some sort of flake? Kelly would never have undertaken such a dubious project. We need to take charge of that damned Skunk Works and make it practical and profitable again.”
Kelly Johnson would never double-cross me by bad-mouthing the stealth project in the corridors of the Skunk Works, but all of us knew Kelly too well not to be able to read his mood and mind. If he didn’t like something or someone, it was as obvious as a purple pimple on the tip of his nose. So I had him in for lunch and said, “Look, Kelly, I know you find this design aesthetically offensive, but I want you to do me one favor. Sit down with this guy, Overholser, and let him answer your questions about stealth. He’s convinced me that we are onto something enormously important. Kelly, this diamond is somewhere between ten thousand and one hundred thousand times lower in radar cross section than any U.S. military airplane or any new Russian MiG. Ten thousand to one hundred thousand times, Kelly. Think of it!”
Kelly remained unmoved. “Theoretical claptrap, Ben. I’ll bet you a quarter that our old D-21 drone has a lower cross section than that goddam diamond.”
We had a ten-foot wooden model of the diamond, and we took it and the original wooden model for the manta ray–shaped D-21 drone and put them side by side into an electromagnetic chamber and cranked up the juice.
That date was September 14, 1975, a date etched forever in my memory because it was about the only time I ever won a quarter from Kelly Johnson. I had lost about ten bucks’ worth of quarters to him over the years betting on technical matters. Like me, my colleagues collected quarters from Kelly just about as often as they beat him at arm wrestling. He had been a hod carrier as a kid and had arms like ship’s cables. He once sprained the wrist of one of our test pilots so badly he put the poor guy out of action for a month. So winning a quarter was a very big deal, in some ways even more satisfying than winning the Irish Sweepstakes. (Depending on the size of the purse, of course.)
I really wanted a photographer around for historical purposes to capture the expression on Kelly’s big, brooding moon-shaped mug when I showed him the electromagnetic chamber results. Hopeless Diamond was exactly as Denys had predicted: a thousand times stealthier than the twelve-year-old drone. The fact that the test results matched Denys’s computer calculations was the first proof that we actually knew what in hell we were doing. Still, Kelly reacted about as graciously as a cop realizing he had collared the wrong suspect. He grudgingly flipped me the quarter and said, “Don’t spend it until you see the damned thing fly.”
But then he sent for Denys Overholser and grilled the poor guy past the point of well-done on the whys and hows of stealth technology. He told me later that he was surprised to learn that with flat surfaces the amount of radar energy returning to the sender is independent of the target’s size. A small airplane, a bomber, an aircraft carrier, all with the same shape, will have identical radar cross sections. “By God, I never would have believed that,” he confessed. I had the feeling that maybe he still didn’t.
Our next big hurdle was to test a ten-foot wooden model of the Hopeless Diamond on an outdoor radar test range near Palmdale, on the Mojave desert. The range belonged to McDonnell Douglas, which was like Buick borrowing Ford’s test track to road test an advanced new sports car design, but I had no choice since Lockheed didn’t own a radar range. Our model was mounted on a 12-foot-high pole, and the radar dish zeroed in from about 1,500 feet away. I was standing next to the radar operator in the control room. “Mr. Rich, please check on your model. It must’ve fallen off the pole,” he said. I looked. “You’re nuts,” I replied. “The model is up there.” Just then a black bird landed right on top of the Hopeless Diamond. The radar operator smiled and nodded. “Right, I’ve got it now.” I wasn’t about to tell him he was zapping a crow. His radar wasn’t picking up our model at all.
For the first time, I felt reassured that we had caught the perfect wave at the crest and were in for one terrifically exciting ride. I saw firsthand how invisible that diamond shape really was. So I crossed my fingers and said a silent prayer for success in the tests to follow.
Other Voices
Denys Overholser
In October 1975, Ben Rich informed me that we and Northrop had won the first phase of the competition and would now contest against each other’s designs in a high noon shoot-out at the Air Force’s radar test range in White Sands, New Mexico. The two companies were each given a million and a half dollars to refine the models and told to be ready to test in four months.
The government demanded competition on any project, but that Hopeless Diamond shape was tough to beat. We built the model out of wood, all flat panels, thirty-eight feet, painted black. And in March 1976 we hauled it by truck to New Mexico. The White Sands radar range was used to test unarmed nuclear warheads, and their radars were the most sensitive and powerful in the free world.
The tests lasted a month. I never did see the Northrop model because under the ground rules we tested separately, on different days. In the end we creamed them. Our diamond was ten times less visible than their model. We achieved the lowest radar cross sections ever measured. And the radar range test results precisely matched the predictions of our computer software. This meant we could now confidently predict radar cross section for any proposed shape, a unique capability at that point in time.
The range was as flat as a tabletop; the pole downrange was in a direct line with five different radar antenna dishes, each targeting a different series of frequencies. The model was mounted atop the pylon and then rotated in front of the radar beam. Well, two very funny things happened. The first day we placed our model on the pole, the pole registered many times brighter than the model. The technicians had a fit. They had thought their poles were invisible, but the trouble was nobody had ever built a model that was so low in radar signature to show them how wrong they really were. Their pole registered minus 20 decibels—okay as long as the model on top was greater than 20. But when the model was registering an unheard-of lower value, the pole intruded on the testing. An Air Force colonel confronted me in a fit of pique: “Well,” he snorted, “since you’re so damned clever, build us a new pole.” I thought, Oh, sure. Build a tower that’s ten decibels lower than the model. Lots of luck.
In the end we had to team up with Northrop to pay for the poles, because the Air Force wasn’t about to foot the bill. It cost around half a million dollars. And I designed a double-wedge pylon which they tested on a 50,000-watt megatron, state of the art in transmitters, that could pick up an object the size of an ant from a mile away. On that radar the pole was about the size of a bumblebee. John Cashen, who was Northrop’s stealth engineer, was in the control room when they fired up the radar. And I overheard their program manager whisper to John: “Jesus, if they can do that with a frigging pole, what can they do with their damned model?”
Ben called me every d
ay for the latest results. The model was measuring approximately the equivalent of a golf ball. One morning we counted twelve birds sitting on the model on top of the pole. Their droppings increased the radar cross section by one and a half decibels. Three decibels is the equivalent of doubling its cross section. And as the day heated on the desert, inversion layers sometimes bent the radar off the target. One day, while using supersensitive radar, the inversion layer bent the beam off the target, making us four decibels better than we deserved. I saw that error, but the technician didn’t. What the hell, it wasn’t my job to tell him he had a false pattern. I figured Northrop probably benefited from a few of them too, and it would all come out in the wash.
But then Ben Rich called me and said, “Listen, take the best pattern we’ve got, calculate the cross section level, and tell me the size of the ball bearing that matches our model.” This was a Ben Rich kind of idea. The model was now shrunk down from a golf ball to a marble because of bad data. But it was official bad data, and no one knew it was bad except little me.
So Ben went out and bought ball bearings and flew to the Pentagon and visited with the generals and rolled ball bearings across their desktops and announced, “Here’s your airplane!” Those generals’ eyes bugged out of their heads. John Chasen was livid when he found out about it because he hadn’t thought of it first. “That goddam Ben Rich,” he fumed. And a few months later, Ben had to stop rolling them across the desk of anyone who wasn’t cleared.
In early April 1976, I got the word that we had officially won the competition with Northrop and would go on to build two experimental airplanes based on our Hopeless Diamond design. The program was now designated under the code name Have Blue. We knew we could produce a model with spectacularly low radar signatures, but the big question was whether we could actually build an airplane that would enjoy the same degree of stealthiness. A real airplane was not only much larger, but also loaded with all kinds of anti-stealth features—a cockpit, engines, air scoops and exhausts, wing and tail flaps, and landing gear doors. In any airplane project the design structures people, the aerodynamics group, and the propulsion and weight specialists all argue and vie for their points of view. In this case, however, I served notice that Denys Overholser’s radar cross section group had top priority. I didn’t give a damn about the airplane’s performance characteristics because its only purpose was to demonstrate the lowest radar signature ever recorded. I joked that if we couldn’t get her airborne, maybe we could sell her as a piece of modern art sculpture.
I assigned the design project to Ed Baldwin, who was our best and most experienced structural engineer. “Baldy” had started out with Kelly designing the P-80, America’s first jet fighter, in 1945, and had designed the configuration of the U-2 spy plane. His task was to take the preliminary design concept of the Hopeless Diamond and make it practical so that it could actually fly. Dick Scherrer had done the preliminary design, laying out the basic shape, and Baldwin had to make certain that the shape’s structure was sound and practical; he would determine its radius, its thicknesses, its ability to withstand certain loads, the number of parts. “Baldy” would put the rubber on the ramp.
All of our structure and wing guys worked for him, and Baldwin enjoyed badgering aerodynamicists, especially in meetings where he could score points with his fellow designers by making aerodynamicists squirm or turn beet red in fury. One on one, Baldy was a pleasant chap—at least moderately so for a crusty Skunk Works veteran—but in meetings we were all fair game and he was a bad-tempered grizzly. Early on, for example, he got into a heated exchange with a very proper Britisher named Alan Brown, our propulsion and stealth expert, about some aspect of the structure he was designing. Baldwin turned crimson. “Goddam it, Brown,” he said, “I’ll design this friggin’ airplane and you can put on the friggin’ stealth afterwards.”
The airplane Baldy designed was a single-seat, twin-engined aircraft, 38 feet long, with a wingspan of 22 feet and a height of slightly more than seven feet. Its gross weight was 12,000 pounds. The leading edge of the delta wing was razor-sharp and swept back more than 70 degrees. To maintain low infrared signatures, the airplane could not go supersonic or have an afterburner because speed produced surface heating—acting like a spotlight for infrared detection. Nor did we want the airplane to be aurally detected from the ground. For acoustical reasons we had to make sure we had minimized engine and exhaust noise by using absorbers and shields. To keep it from being spotted in the sky, we decided to use special additives to avoid creating exhaust contrails. And to eliminate telltale electromagnetic emissions, there was no internal radar system on board.
Our airplane wasn’t totally invisible, but it held the promise of being so hard to detect that even the best Soviet defenses could not accomplish a fatal lock-on missile cycle in time to thwart its mission. If they could detect a fighter from a hundred miles out, that airplane was heading for the loss column. The long-range radar had plenty of time to hand off the incoming intruder to surface-to-air missile batteries, which, in turn, would fire the missiles and destroy it. Early-warning radar systems could certainly see us, but not in time to hand us over to missile defenses. If the first detection of our airplane was at fifteen miles from target, rather than at fifty miles, there simply would be no time to nail us before we hit the target. And because we were so difficult to detect, even at fifteen miles, radar operators would also be thwarted while trying to detect us through a confusing maze of ground clutter.
I had asked Kelly to estimate the cost of building these two experimental Have Blue airplanes. He came back with the figure of $28 million, which turned out to be almost exactly right. I asked the Air Force for $30 million, but they had only $20 million to spend in discretionary funds for secret projects by which they bypassed congressional appropriations procedures. So, in the late spring of 1976, I was forced to go begging for the missing $10 million to our CEO, Bob Haack, who was sympathetic but not particularly enthusiastic. He said, “Look, Ben, we’re in tough straits right now. I don’t think we can really afford this.” I pushed a little harder and got him to agree to let me present the proposal to the full board of directors. Bob set up the meeting, and I just laid it all out. Larry Kitchen, Lockheed’s president, and Roy Anderson, the vice chairman, spoke up enthusiastically in support. I told the board I thought we were dealing with a project that had the potential for $2 to $3 billion in future sales. I predicted we would be building stealth fighters, stealth missiles, stealth ships, the works. I was accused of hyperbole by one or two directors, but in the end I got my funding, and as time went on my sales predictions proved to be conservatively low.
Even worse, I began picking up rumors that certain officials at the Pentagon were accusing me of rigging the test results of the radar range competition against Northrop. An Air Force general called me, snarling like a pit bull. “Rich, I’m told you guys are pulling a fast one on us with phony data.” I was so enraged that I hung up on that son of a bitch. No one would have ever dared to accuse Kelly Johnson’s Skunk Works of rigging any data, and by God, no one was going to make that accusation against Ben Rich’s operation either. Our integrity was as important to all of us as our inventiveness. The accusation, I discovered, was made by a civilian radar expert advising the Air Force, who had close ties to leading manufacturers of electronic jamming devices installed in all Air Force planes to fool or thwart enemy radar and missiles. If stealth was as good as we claimed, those companies might be looking for new work.
His motivation for bad-mouthing us was obvious; but it was equally apparent that we were unfairly being attacked without any effective way for me to defend the Skunk Works’ integrity from three thousand miles away. So I invited one of the nation’s most respected radar experts to Burbank to personally test and evaluate our stealth data. MIT’s Lindsay Anderson accepted my invitation in the late summer of 1976 and arrived at my doorstep carrying a bag of ball bearings in his briefcase. The ball bearings ranged in size from a golf ball to an ei
ghth of an inch in diameter. Professor Anderson requested that we glue each of these balls onto the nose of the Hopeless Diamond and then zap them with radar. This way he could determine whether our diamond had a lower cross section than the ball bearings. If the diamond in the background proved to be brighter than the ball in the foreground, then the ball could not be measured at all. That got me a little nervous because nothing should measure less than an eighth-of-an-inch ball bearing, but we went ahead anyway. As it turned out, we measured all the balls easily—even the eighth-of-an-inch one—and when Professor Anderson saw that the data matched the theoretical calculated value of the ball bearings, he was satisfied that all our claims were true.
That was the turning point for the entire stealth adventure, which could have ended right there if Lindsay Anderson had reinforced the accusation that we were being unscrupulous and presenting bogus data. But once he corroborated our achievement back in Washington, I was informed by a telegram from the Air Force chief of staff that Have Blue was now classified “Top Secret—Special Access Required.” That security classification was rare—clamped only on such sensitive programs as the Manhattan Project, which created the first atomic bomb during World War II. My first reaction was “Hooray, they finally realize how significant this technology really is,” but Kelly set me straight and with a scowl urged me to cancel the whole damned project right then and there.