For most of the war, the moral dilemmas posed to scientists in Axis countries and in those under German occupation, such as Denmark and France, had been starker and carried immediate personal vulnerability. The ambiguities and uncertainties of the Copenhagen meeting in 1941 between the leading German nuclear physicist Werner Heisenberg and Niels Bohr have been widely explored. However, others also strove to reconcile personal conscience and patriotic sentiment. Fritz Strassmann, one of the discoverers of fission, hid a Jewish pianist in his Berlin apartment while working on nuclear calculations for the Nazi government. Before later joining the Resistance and helping liberate Paris, Marie Curie's son-in-law, Frederic Joliot-Curie, had to decide how far he could acquiesce in German use of his nuclear institute in Paris at a time when the prospects of Allied victory seemed remote.
The majority of Allied scientists involved would maintain that Oppenheimer's apologia was unwarranted. Knowledge was neutral; the use to which politicians put it was the dilemma. In any case, the Allies could not have neglected the weapon's potential when they knew that the Germans had embarked on a weapons research program. That an Allied team had won the race on behalf of the democracies was preferable to any other outcome.
Whichever view the scientists took, the final decision to use the bomb was a political one, and one which the American and British public supported overwhelmingly on the grounds that it saved Allied lives and brought the war to a speedier end than would otherwise have been the case. With hindsight and with distance from the feelings of individuals in war-weary nations who were apprehensive of the cost in the lives of their loved ones of an invasion of Japan, historians have questioned the political judgments. They have suggested that there were alternatives to the use of the atomic bomb to end the war—alternatives which would have saved Japanese lives without sacrificing Allied ones.
· · ·
The moral issues that faced both the physicists in advising on the use of the bomb and the politicians in deciding upon it were, in fact, at least half a century old. Alfred Nobel, the inventor of nitroglycerine and the founder of the Nobel Prizes, not least for peace, had justified his invention as putting an end to war. In i 899, at the time of Marie Curie's pioneering work on radium, the nations of the world had met at The Hague to discuss how to avoid conflict by the creation of systems for arbitration. They had also laid down in the Hague Convention rules for the conduct of war if it could not be avoided. Among them, four years before the first powered flight, was a prohibition against bombarding "by whatever means . . . undefended" civilian towns or buildings and another prohibition against the dropping of bombs from balloons "or other kinds of aerial vessels."
A second conference was held at The Hague in 1907 at the instigation of President Theodore Roosevelt to review the provisions of the first. Only twenty-seven countries, including Britain and the United States, supported renewal of the ban on aerial warfare. Seventeen, including Germany and Japan, did not, and so the provision fell. All could agree, however, with a definition of targets permitted to be bombarded by whatever means. Civilian targets were still excluded, but aerial bombardment had gained legitimacy.
World War I brought science and warfare together in a wav no other had. On the evening of 22 April 1915, Germany launched the world's first poison gas attack, releasing 168 tons of chlorine onto the French and Canadian lines. The German scientist in charge of the program defended the use of gas as a means of shortening the war and thus saving lives. After initially condemning the attacks as further breaches of the rule of civilized law by the barbarous "Hun," Britain, France, and later the United States, after its entry into the war, did not long delay in following suit. By the armistice, Allied production of chemical weapons far exceeded Germany's. The First World War would come to be known as the "Chemists' War." By the end of the conflict, about 5,500 scientists on all sides had worked on chemical weapons alone, and there had been one million casualties from gas attacks. Among them was Lance Corporal Adolf Hitler, who, temporarily blinded by a British gas grenade on 13 October 1918, was still in the hospital the day Germany surrendered nearly a month later. Yet this "war to end wars" would not do so, and the next world conflict, precipitated by that lance corporal, would be the physicists' war.
The First World War had seen the death of some 1 o million men, the fall of three empires, the establishment of a major communist state, as well as the emergence of the airplane as a weapon. Yet, at postwar conferences, countries were lukewarm about defining further rules for the conduct of air warfare. No agreement was ever ratified. Over the years, the definition of what in the previously agreed documents was "civilian" and thus free from attack became blurred. At the beginning of the Second World War, President Franklin Roosevelt pleaded with the belligerents to refrain from "bombardment from the air of civilian populations or unfortified cities." The 1940 memorandum from two emigres to the British government arguing that an atomic bomb was feasible and urging the immediate start of a research program suggested that the very likely high number of civilian casualities "may make it unsuitable as a weapon for use by this country."
Yet over the next five years of increasingly total war the Allied air forces followed the precedents set by their enemies and attacked whole cities such as Hamburg, Dresden, and Tokyo, in the latter attack using the newly developed "sticky fire"—napalm. Even before 6 August 1945 any distinction between civilians and combatants had been eliminated in practice, if not in presentation.
Today we still experience the scientific, political, and moral fallout from 6 August 194£. Against the tumultuous background of the history of the first half of the twentieth century, Before the Fallout explains how joy in pure scientific discovery created a beautiful science that was suddenly transmuted into a wartime sprint for the ultimate weapon. Through the stories and voices of those involved, it tells how individuals responded to the questions of personal responsibility posed by the results of their compulsive curiosity and why the bomb fell on Hiroshima and its people and changed our world forever.
*In 1998 a Russian general revealed that the Soviet Union had previously developed a portable atomic bomb and that, by then, less than half of the more than 1 00 manufactured could be accounted for. Despite subsequent official Russian denials that anv were missing and assurances that all would be destroyed by 2000, experts remain concerned.
* Szilard personifies the complex character of many of the scientists. One of the brightest minds and sharpest and most liberal analysts of the moral dilemma, he had such an opinion of himself and aversion to physical labor that he employed others to do his experimental work and was thrown out of his residential apartment at the University of Chicago for habitually refusing to empty his bathwater or flush the toilet on the grounds that this was "maid's work."
ONE
"BRILLIANT IN THE DARKNESS"
TOWARD MIDNIGHT in a Paris garden on a warm June night in 1903, an attentive group watched Pierre Curie take a vial from his pocket and hold it aloft. The radium inside shone "brilliant in the darkness." Curie's gesture was a tribute to his wife, Marie, the discoverer of radium. Earlier that day this slight woman with her high-domed forehead and intense, gray-eyed gaze had become the first female in France to receive a doctorate. The occasion was an impromptu celebratory dinner party at the villa of one of the Curies' friends, scientist Paul Langevin.
Marie Curie, born in 1867, was the youngest child of a progressive-minded Polish teacher of physics and mathematics, Wladislaw Sklodowski. She had left her native Warsaw, where women were barred from the university, for Paris, driven by a determination to study science and to do so in a free society. As a sovereign entity, Poland no longer existed. The three rival empires of Germany, Austro-Hungary, and Russia had partitioned Marie's homeland between them. The Sklodowskis, a close-knit, intellectual family, lived in Russian Poland, where Polish culture was crudely suppressed and "Russianized." In adolescence Marie had risked prison or deportation to Siberia by studying and then teaching at the cla
ndestine "Floating University" in Warsaw—a radical Polish night-school for young women. The university's aim was to develop a cadre of committed women capable, in turn, of educating Poland's poor and thereby equipping them to resist Russian oppression. To avoid suspicion, the students gathered in small groups in impromptu classrooms in the cellars and attics of those bold enough to host them.
Science, particularly mathematics and chemistry, had fascinated Marie from an early age. The Floating University provided her with her first taste of working in a laboratory, albeit an illicit one, concealed from the prying eyes of the authorities in a Warsaw museum. Casting around for a suitable foreign university in which to complete her scientific education, Marie was attracted to the Sorbonne, part of the University of Paris. Not only did it have a high reputation for science, but many of Poland's intellectual elite had settled in Paris.
However, the Sklodowskis were perennially short of money. Marie's chances of achieving her ambition seemed remote until she identified a way of helping both her elder sister Bronya and herself. She would work as a governess and send all her wages to fund Bronya's medical studies in Paris. Then, as soon as she had qualified as a doctor, Bronya would send for her younger sister and, in turn, support her through her own studies. Refusing to listen to Bronya's objections, the eighteen-year-old Marie secured a post with the Zorawski family fifty miles north of Warsaw and set out in the depths of winter for their manor house. As she later wrote, that cold, lonely journey remained "one of the most vivid memories of my youth." The final leg was a chilling five-hour sleigh ride across snow-covered beet fields, and she made it with a heavy heart.
Initially, though, Marie found life as a governess bearable, even pleasant. During the day she instructed her employers' daughters and, applying the philosophy of the Floating University, also taught the local peasant children. In the evenings she pursued her own studies by candlelight. As she later recalled, "During these years of isolated work . . . I finally turned towards mathematics and physics, and resolutely undertook a serious preparation for future work." She also learned "the habit of independent work." However, Marie's tranquillity was broken when she and the Zorawskis' eldest son, Kazimierz, fell in love when he came home on vacation from Warsaw University, where he was studying mathematics. Although his parents liked Marie, they refused to contemplate their son's talk of marriage to a woman they considered socially inferior. Eventually Marie left the Zorawskis, where, as she confessed to her brother, the "icy atmosphere of criticism" had become intolerable. She had still hoped that Kazimierz would show the strength of character to defy his parents and marry her, but finally, four fruitless years after their first meeting, she accepted that he would not.
Bronya, by then a physician and married to another Polish doctor, had been urging Marie to come to Paris. At last, in November i 891, the twenty-three-year-old Marie bought the cheapest possible train tickets for the forty-hour, thousand-mile journey to Paris, where she enrolled in the Sorbonne's Faculty of Sciences. At first she lived with Bronya, but then found lodgings in an attic room on the Left Bank, sacrificing all comforts to the one essential: solitude to study in peace. As she later wrote, her room was "very cold in winter, for it was insufficiently heated by a small stove which often lacked coal." Sometimes the temperature fell so low that the water froze in her hand basin, and "to be able to sleep I was obliged to pile all my clothes on the bedcovers." When that failed to warm her, she pulled towels and everything else she possessed—including a chair—on top of her. She survived on a meager diet of tea and bread and butter supplemented by the occasional egg. One day she fainted on the street. Bronya carried her home, made her eat a large steak, and lectured her on taking better care of herself, but Marie persisted in her spartan, single-minded existence.
Physical deprivation was unimportant to her. She had found a stimulating intellectual challenge: "It was like a new world opened to me, the world of science, which I was at last permitted to know in all liberty." She passed her licence es sciences physiques* in i 893, not only top of the class but also the first woman to receive such a degree. She took her licence es sciences mathematiques in 1 894, coming in second in her class. While she was still preparing for her mathematics exams, the Society for the Encouragement of National Industry invited her to perform a study of the magnetic properties of steels. She was eager to do so but lacked sufficient room for the necessary equipment in her laboratory at the Sorbonne. Polish friends in Paris came to her aid. They invited her to tea to meet the French physicist Pierre Curie, laboratory chief of the Paris School of Physics and Chemistry. He too was working on magnetism, and they hoped that he might be able to help her.
Pierre's background, like Marie's, was radical and progressive. His father, a determinedly republican doctor, Eugene Curie, had tended wounded activists during the rising in 1 8 71 of the Paris Commune—the revolutionary council formed by the workers of Paris after France's defeat by Prussia. The Communards had gone to the barricades in defiance of the French government, which had concluded an armistice they considered shameful. The Commune lasted ten weeks before being bloodily suppressed by French government forces, leaving some twenty thousand dead. Eugene Curie sent Pierre, only twelve at the time, and his slightly older brother, Jacques, out into the streets to search for wounded people in need of medical care and protection from the troops.
Later, as life returned to normal, Dr. Curie had encouraged his sons to explore the natural world. Both became scientific assistants at the Sorbonne, where, working together in the laboratory of mineralogy, they began studying the structure of crystals. This led them to a remarkable discovery—the phenomenon of piezoelectricity† whereby crystals subjected to pressure produce a current—which became the basis for the gramophone. The two young men had developed a piezoelectric quartz instrument capable of measuring the tiny voltages emitted by the crystals.
Pierre and Marie Curie circa 1895
When he met Marie, Pierre Curie was thirty-five years old, introspective and unworldly. Many years before, he had loved a girl whom he described in a private note as "the tender companion of all my hours," but she had died. Since then he had devoted himself to his work while striving to avoid emotional though not physical entanglements. He believed that "a kiss given to one's mistress is less dangerous than a kiss given to one's mother, because the former can answer a purely physical need." Perhaps as a defense against intellectual engagement, he claimed to believe that "women of genius are rare" and that "when, pushed by some mystic love, we wish to enter into a life opposed to nature, when we give all our thoughts to some work which removes us from those immediately about us, it is with women that we have to struggle."
After her experience with Kazimierz Zorawski, Marie was wary of relationships. Young students at the Sorbonne frequently declared their passion for the gamine ash blond, excited by her combination of cool intellect and sexual charisma, but none impressed her. Pierre Curie, however, did. As she later wrote, "His simplicity, and his smile, at once grave and youthful, inspired confidence." Tall, with cropped auburn hair and a pointed beard, he had an unconscious, loose-limbed grace. He was unable to offer Marie accommodation for her experiments, but their meeting sparked an intense relationship. They quickly discovered what Marie called "a surprising kinship" in their ideas. Both believed science to be the world's salvation. Both believed that they should devote their lives to make it so.
Pierre was soon broaching marriage. Marie hesitated, knowing that it would prevent her cherished scheme of one day returning to her homeland to teach. During a visit to Poland in the summer of 1894, despite her feelings for Pierre, she actively explored the prospect of an appointment at the University of Cracow. However, Pierre knew exactly howr to woo her, writing to her that "it would, nevertheless, be a beautiful thing in which I hardly dare believe, to pass through life together hypnotized in our dreams; your dream for your country, our dream for humanity; our dream for science. Of all these dreams, I believe the last, alone, is legitimate
." Such pleas touched Marie, as did his offer to move to Poland, a sacrifice which she told her sister Bronya she had no right to accept. On 26 July 1895 Pierre and Marie were married at a brief civil ceremony with no white dress, wedding ring, or elaborate wedding breakfast. They spent their honeymoon roaming Brittany on bicycles purchased with money given as a wedding present.
By early September the Curies were back in Paris, living in a tiny three-room apartment which Marie, impatient of domestic distractions, furnished with the bare minimum: two chairs, a table, bookshelves, and a bed. Just before their wedding Pierre Curie had been appointed to a new chair of physics, created especially for him, at the Paris School of Physics and Chemistry. Marie was allowed to transfer her work on steels there from the Sorbonne. As a woman working in a laboratory, she was an object of curiosity and some animosity, but this did not deter her. Neither did the birth in September 1897 of the Curies' first daughter, Irene, whom Marie delightedly called her "little queen" in letters home to Poland. She completed her report on steels within three months of the birth and at once began seeking a suitable subject for her doctoral thesis. She chose a newly discovered subject—Becquerel rays.
· · ·
Becquerel rays owed their discovery to a phenomenon that had caught the public imagination. Two years earlier in late 1895, Wilhelm Rontgen, a reclusive German physicist at the University of Wiirzburg, had been following up work by the Heidelberg physicist Philipp Lenard on how electrical currents pass through gases at low pressures. Rontgen's prime piece of equipment was a three-foot-long glass tube from which most of the air had been pumped out. Inside the tube were two metal terminals—one positive, called the "anode," and the other negative, called the "cathode." Fine wires passing through the glass connected the terminals to an electrical source.
Before the Fallout Page 2