Thinking, Fast and Slow

Home > Other > Thinking, Fast and Slow > Page 51
Thinking, Fast and Slow Page 51

by Daniel Kahneman


  Misconceptions of regression. Suppose a large group of children has been examined on two equivalent versions of an aptitude test. If one selects ten children from among those who did best on one of the two versions, he will usually find their performance on the second version to be somewhat disappointing. Conversely, if one selects ten children from among those who did worst on one version, they will be found, on the average, to do somewhat better on the other version. Mo [r vs tre generally, consider two variables X and Y which have the same distribution. If one selects individuals whose average X score deviates from the mean of X by k units, then the average of their Y scores will usually deviate from the mean of Y by less than k units. These observations illustrate a general phenomenon known as regression toward the mean, which was first documented by Galton more than 100 years ago.

  In the normal course of life, one encounters many instances of regression toward the mean, in the comparison of the height of fathers and sons, of the intelligence of husbands and wives, or of the performance of individuals on consecutive examinations. Nevertheless, people do not develop correct intuitions about this phenomenon. First, they do not expect regression in many contexts where it is bound to occur. Second, when they recognize the occurrence of regression, they often invent spurious causal explanations for it.11 We suggest that the phenomenon of regression remains elusive because it is incompatible with the belief that the predicted outcome should be maximally representative of the input, and, hence, that the value of the outcome variable should be as extreme as the value of the input variable.

  The failure to recognize the import of regression can have pernicious consequences, as illustrated by the following observation.12 In a discussion of flight training, experienced instructors noted that praise for an exceptionally smooth landing is typically followed by a poorer landing on the next try, while harsh criticism after a rough landing is usually followed by an improvement on the next try. The instructors concluded that verbal rewards are detrimental to learning, while verbal punishments are beneficial, contrary to accepted psychological doctrine. This conclusion is unwarranted because of the presence of regression toward the mean. As in other cases of repeated examination, an improvement will usually follow a poor performance and a deterioration will usually follow an outstanding performance, even if the instructor does not respond to the trainee’s achievement on the first attempt. Because the instructors had praised their trainees after good landings and admonished them after poor ones, they reached the erroneous and potentially harmful conclusion that punishment is more effective than reward.

  Thus, the failure to understand the effect of regression leads one to overestimate the effectiveness of punishment and to underestimate the effectiveness of reward. In social interaction, as well as in training, rewards are typically administered when performance is good, and punishments are typically administered when performance is poor. By regression alone, therefore, behavior is most likely to improve after punishment and most likely to deteriorate after reward. Consequently, the human condition is such that, by chance alone, one is most often rewarded for punishing others and most often punished for rewarding them. People are generally not aware of this contingency. In fact, the elusive role of regression in determining the apparent consequences of reward and punishment seems to have escaped the notice of students of this area.

  Availability

  There are situations in which people assess the frequency of a class or the probability of an event by the ease with which instances or occurrences can be brought to mind. For example, one may assess the risk of heart attack among middle-aged people by recalling such occurrences a [occpunishmentmong one’s acquaintances. Similarly, one may evaluate the probability that a given business venture will fail by imagining various difficulties it could encounter. This judgmental heuristic is called availability. Availability is a useful clue for assessing frequency or probability, because instances of large classes are usually recalled better and faster than instances of less frequent classes. However, availability is affected by factors other than frequency and probability. Consequently, the reliance on availability leads to predictable biases, some of which are illustrated below.

  Biases due to the retrievability of instances. When the size of a class is judged by the availability of its instances, a class whose instances are easily retrieved will appear more numerous than a class of equal frequency whose instances are less retrievable. In an elementary demonstration of this effect, subjects heard a list of well-known personalities of both sexes and were subsequently asked to judge whether the list contained more names of men than of women. Different lists were presented to different groups of subjects. In some of the lists the men were relatively more famous than the women, and in others the women were relatively more famous than the men. In each of the lists, the subjects erroneously judged that the class (sex) that had the more famous personalities was the more numerous.13

  In addition to familiarity, there are other factors, such as salience, which affect the retrievability of instances. For example, the impact of seeing a house burning on the subjective probability of such accidents is probably greater than the impact of reading about a fire in the local paper. Furthermore, recent occurrences are likely to be relatively more available than earlier occurrences. It is a common experience that the subjective probability of traffic accidents rises temporarily when one sees a car overturned by the side of the road.

  Biases due to the effectiveness of a search set. Suppose one samples a word (of three letters or more) at random from an English text. Is it more likely that the word starts with r or that r is the third letter? People approach this problem by recalling words that begin with r (road) and words that have r in the third position (car) and assess the relative frequency by the ease with which words of the two types come to mind. Because it is much easier to search for words by their first letter than by their third letter, most people judge words that begin with a given consonant to be more numerous than words in which the same consonant appears in the third position. They do so even for consonants, such as r or k, that are more frequent in the third position than in the first.14

  Different tasks elicit different search sets. For example, suppose you are asked to rate the frequency with which abstract words (thought, love) and concrete words (door, water) appear in written English. A natural way to answer this question is to search for contexts in which the word could appear. It seems easier to think of contexts in which an abstract concept is mentioned (love in love stories) than to think of contexts in which a concrete word (such as door) is mentioned. If the frequency of words is judged by the availability of the contexts in which they appear, abstract words will be judged as relatively more numerous than concrete words. This bias has been observed in a recent study15 which showed that the judged frequency of occurrence of abstract words was much higher than that of concrete words, equated in objective frequency. Abstract words were also judged to appear in a much greater variety of contexts than concrete words.

  Biases of imaginability. Sometimes one has to assess the frequency of a class whose instances are not stored in memory but can be generated according to a given rule. In such situations, one typically generates several instances and evaluates frequency or probability by the ease with which the relevant instances can be constructed. However, the ease of constructing instances does not always reflect their actual frequency, and this mode of evaluation is prone to biases. To illustrate, consider a group of 10 people who form committees of k members, 2 = k= 8. How many different committees of k members can be formed? The correct answer to this problem is given by the binomial coefficient (10/k) which reaches a maximum of 252 for k= 5. Clearly, the number of committees of k members equals the number of committees of (10 – k) members, because any committee of k members defines a unique group of (10 – k) nonmembers.

  One way to answer this question without computation is to mentally construct committees of k members and to evaluate their number by the ease with which they
come to mind. Committees of few members, say 2, are more available than committees of many members, say 8. The simplest scheme for the construction of committees is a partition of the group into disjoint sets. One readily sees that it is easy to construct five disjoint committees of 2 members, while it is impossible to generate even two disjoint committees of 8 members. Consequently, if frequency is assessed by imaginability, or by availability for construction, the small committees will appear more numerous than larger committees, in contrast to the correct bell-shaped function. Indeed, when naive subjects were asked to estimate the number of distinct committees of various sizes, their estimates were a decreasing monotonic function of committee size.16 For example, the median estimate of the number of committees of 2 members was 70, while the estimate for committees of 8 members was 20 (the correct answer is 45 in both cases).

  Imaginability plays an important role in the evaluation of probabilities in real-life situations. The risk involved in an adventurous expedition, for example, is evaluated by imagining contingencies with which the expedition is not equipped to cope. If many such difficulties are vividly portrayed, the expedition can be made to appear exceedingly dangerous, although the ease with which disasters are imagined need not reflect their actual likelihood. Conversely, the risk involved in an undertaking may be grossly underestimated if some possible dangers are either difficult to conceive of, or simply do not come to mind.

  Illusory correlation. Chapman and Chapman17 have described an interesting bias in the judgment of the frequency with which two events co-occur. They presented naive judges with information concerning several hypothetical mental patients. The data for each patient consisted of a clinical diagnosis and a drawing of a person made by the patient. Later the judges estimated the frequency with which each diagnosis (such as paranoia or suspiciousness) had been accompanied by various features of the drawing (such as peculiar eyes). The subjects markedly overestimated the frequency of [ frpici co-occurrence of natural associates, such as suspiciousness and peculiar eyes. This effect was labeled illusory correlation. In their erroneous judgments of the data to which they had been exposed, naive subjects “rediscovered” much of the common, but unfounded, clinical lore concerning the interpretation of the draw-a-person test. The illusory correlation effect was extremely resistant to contradictory data. It persisted even when the correlation between symptom and diagnosis was actually negative, and it prevented the judges from detecting relationships that were in fact present.

  Availability provides a natural account for the illusory-correlation effect. The judgment of how frequently two events co-occur could be based on the strength of the associative bond between them. When the association is strong, one is likely to conclude that the events have been frequently paired. Consequently, strong associates will be judged to have occurred together frequently. According to this view, the illusory correlation between suspiciousness and peculiar drawing of the eyes, for example, is due to the fact that suspiciousness is more readily associated with the eyes than with any other part of the body.

  Lifelong experience has taught us that, in general, instances of large classes are recalled better and faster than instances of less frequent classes; that likely occurrences are easier to imagine than unlikely ones; and that the associative connections between events are strengthened when the events frequently co-occur. As a result, man has at his disposal a procedure (the availability heuristic) for estimating the numerosity of a class, the likelihood of an event, or the frequency of co-occurrences, by the ease with which the relevant mental operations of retrieval, construction, or association can be performed. However, as the preceding examples have demonstrated, this valuable estimation procedure results in systematic errors.

  Adjustment and Anchoring

  In many situations, people make estimates by starting from an initial value that is adjusted to yield the final answer. The initial value, or starting point, may be suggested by the formulation of the problem, or it may be the result of a partial computation. In either case, adjustments are typically insufficient.18 That is, different starting points yield different estimates, which are biased toward the initial values. We call this phenomenon anchoring.

  Insufficient adjustment. In a demonstration of the anchoring effect, subjects were asked to estimate various quantities, stated in percentages (for example, the percentage of African countries in the United Nations). For each quantity, a number between 0 and 100 was determined by spinning a wheel of fortune in the subjects’ presence. The subjects were instructed to indicate first whether that number was higher or lower than the value of the quantity, and then to estimate the value of the quantity by moving upward or downward from the given number. Different groups were given different numbers for each quantity, and these arbitrary numbers had a marked effect on estimates. For example, the median estimates of the percentage of African countries in the United Nations were 25 and 45 for groups that received 10 and 65, respectively, as starting points. Payoffs for accuracy did not reduce the anchoring effect.

  Anchoring occurs not only when the starting point is given to the subject, but also when the subject bases his estimate on the result of some incomplete computation. A study of intuitive numerical estimation illustrates this effect. Two groups of high school student [choult os estimated, within 5 seconds, a numerical expression that was written on the blackboard. One group estimated the product

  8 ×7 ×6 ×5 ×4 ×3 ×2 ×1

  while another group estimated the product

  1 ×2 ×3 ×4 ×5 ×6 ×7 ×8

  To rapidly answer such questions, people may perform a few steps of computation and estimate the product by extrapolation or adjustment. Because adjustments are typically insufficient, this procedure should lead to underestimation. Furthermore, because the result of the first few steps of multiplication (performed from left to right) is higher in the descending sequence than in the ascending sequence, the former expression should be judged larger than the latter. Both predictions were confirmed. The median estimate for the ascending sequence was 512, while the median estimate for the descending sequence was 2,250. The correct answer is 40,320.

  Biases in the evaluation of conjunctive and disjunctive events. In a recent study by Bar-Hillel19 subjects were given the opportunity to bet on one of two events. Three types of events were used: (i) simple events, such as drawing a red marble from a bag containing 50% red marbles and 50% white marbles; (ii) conjunctive events, such as drawing a red marble seven times in succession, with replacement, from a bag containing 90% red marbles and 10% white marbles; and (iii) disjunctive events, such as drawing a red marble at least once in seven successive tries, with replacement, from a bag containing 10% red marbles and 9% white marbles. In this problem, a significant majority of subjects preferred to bet on the conjunctive event (the probability of which is .48) rather than on the simple event (the probability of which is .50). Subjects also preferred to bet on the simple event rather than on the disjunctive event, which has a probability of .52. Thus, most subjects bet on the less likely event in both comparisons. This pattern of choices illustrates a general finding. Studies of choice among gambles and of judgments of probability indicate that people tend to overestimate the probability of conjunctive events20 and to underestimate the probability of disjunctive events. These biases are readily explained as effects of anchoring. The stated probability of the elementary event (success at any one stage) provides a natural starting point for the estimation of the probabilities of both conjunctive and disjunctive events. Since adjustment from the starting point is typically insufficient, the final estimates remain too close to the probabilities of the elementary events in both cases. Note that the overall probability of a conjunctive event is lower than the probability of each elementary event, whereas the overall probability of a disjunctive event is higher than the probability of each elementary event. As a consequence of anchoring, the overall probability will be overestimated in conjunctive problems and underestimated in disjunctive problems.
/>
  Biases in the evaluation of compound events are particularly significant in the context of planning. The successful completion of an undertaking, such as the development of a new product, typically has a conjunctive character: for the undertaking to succeed, each of a series of events must occur. Even when each of these events is very likely, the overall probability of success can be quite low if the number of events is large. The general tendency to overestimate the pr [timrall obability of conjunctive events leads to unwarranted optimism in the evaluation of the likelihood that a plan will succeed or that a project will be completed on time. Conversely, disjunctive structures are typically encountered in the evaluation of risks. A complex system, such as a nuclear reactor or a human body, will malfunction if any of its essential components fails. Even when the likelihood of failure in each component is slight, the probability of an overall failure can be high if many components are involved. Because of anchoring, people will tend to underestimate the probabilities of failure in complex systems. Thus, the direction of the anchoring bias can sometimes be inferred from the structure of the event. The chain-like structure of conjunctions leads to overestimation, the funnel-like structure of disjunctions leads to underestimation.

  Anchoring in the assessment of subjective probability distributions. In decision analysis, experts are often required to express their beliefs about a quantity, such as the value of the Dow Jones average on a particular day, in the form of a probability distribution. Such a distribution is usually constructed by asking the person to select values of the quantity that correspond to specified percentiles of his subjective probability distribution. For example, the judge may be asked to select a number, X90, such that his subjective probability that this number will be higher than the value of the Dow Jones average is .90. That is, he should select the value X90 so that he is just willing to accept 9 to 1 odds that the Dow Jones average will not exceed it. A subjective probability distribution for the value of the Dow Jones average can be constructed from several such judgments corresponding to different percentiles.

 

‹ Prev