4. Where Atoms Come From
“proved by 1939”: One man who helped figure out the fusion cycles in stars, Hans Bethe, won a $500 prize for doing so, which he used to bribe Nazi officials and spring his mother and, oddly, her furniture from Germany.
“ ‘chemically peculiar stars’ ”: A fun factoid: Astronomers have identified a strange class of stars that manufacture promethium through an unknown process. The most famous is called Przybylski’s star. The truly odd thing is that unlike most fusion events deep inside stars, the promethium must be created on the star’s surface. Otherwise, it’s too radioactive and short-lived to survive the million-year crawl from the fusion-rich core of a star to its outer layers.
“stars govern the fate of mankind”: The two portentous Shakespeare quotes that opened the B2FH paper were as follows:
It is the stars, / The stars above us, govern our conditions.
King Lear, act 4, scene 3
The fault, dear Brutus, is not in our stars, / But in ourselves.
Julius Caesar, act 1, scene 2
“post-ferric fusion”: To be technical, stars don’t form iron directly. They first form nickel, element twenty-eight, by fusing two atoms of silicon, element fourteen, together. This nickel is unstable, however, and the vast majority of it decays to iron within a few months.
“low-watt, brownish light”: Jupiter could ignite fusion with deuterium—“heavy” hydrogen with one proton and one neutron—if it had thirteen times its current mass. Given the rarity of deuterium (1 out of every 6,500 hydrogen molecules), it would be a pretty weak star, but it would still count. To ignite regular hydrogen fusion, Jupiter would need seventy-five times its current mass.
“like microscopic cubes”: And not to be outdone by Jupiter’s or Mercury’s strange weather, Mars sometimes experiences hydrogen peroxide “snow.”
“a siderophile, or iron-loving element”: The siderophiles osmium and rhenium have also helped scientists reconstruct how the moon was formed from a cataclysmic impact between the very early earth and an asteroid or comet. The moon coalesced from the debris that was thrown up.
“later dubbed Nemesis”: The goddess Nemesis punished hubris. She made sure no earthly creature could ever grow too proud by striking down anyone who threatened to grow more powerful than the gods. The analogy to the sun’s companion star was that if earthly creatures (say, dinosaurs) evolved toward true intelligence, Nemesis would wipe them out before they got traction.
“like a carousel as it drifts”: Ironically, the overall motion of the sun, if viewed from afar, would resemble the old wheels-within-wheels cycles and epicycles that ancient astronomers bent backward trying to explain in their pre-Copernican, earth-centered cosmos (it’s just that earth cannot be called the center anymore, not by a long shot). Like Miescher and proteins, this is an example of the cyclical nature of all ideas, even in science.
5. Elements in Times of War
“went on to win the war”: For more details on the history of chemical warfare, especially the experience of American troops, see “Chemical Warfare in World War I: The American Experience, 1917–1918,” by Major Charles E. Heller, part of the Leavenworth Papers published by the Combat Studies Institute, U.S. Army Command and General Staff College, Fort Leavenworth, Kansas, http://www-cgsc.army.mil/carl/resources/csi/Heller/HELLER.asp.
“6.7 billion people today”: Among the many other things we can attribute to Fritz Haber’s ammonia: Charles Townes built the first working maser, the precursor of the laser, by using ammonia as the stimulating agent.
6. Completing the Table … with a Bang
“a full and correct list”: Urbain wasn’t the only person Moseley embarrassed. Moseley’s apparatus also dismantled Masataka Ogawa’s claim for discovering nipponium, element forty-three (see chapter 8).
“ ‘most irreparable crimes in history’ ”: For accounts of the bungling orders and battles that led to Moseley’s death, see The Making of the Atomic Bomb by Richard Rhodes. And actually, you should probably just read the whole thing, since it’s the best account of twentieth-century science history yet written.
“as ‘not good for much’ ”: The Time magazine article that mentioned the discovery of element sixty-one also included this tidbit about the question of what to name the element: “One convention wag suggested [naming it] grovesium, after loud-mouthed Major General Leslie R. Groves, military chief of the atom bomb project. Chemical symbol: Grr.”
“Pac-Man style”: Besides the electron-gobbling Pac-Man model of the nucleus, scientists at the time also developed the “plum pudding” model, in which electrons were embedded like raisins in a “pudding” of positive charge (Rutherford disproved this by proving that a compact nucleus existed). After the discovery of fission, scientists discovered the liquid drop model, in which large nuclei split like a drop of water on a surface splitting cleanly into two drops. Lise Meitner’s work was crucial in developing the liquid drop model.
“ ‘would go thermonuclear’ ”: The quotes from George Dyson can be found in his book Project Orion: The True Story of the Atomic Spaceship.
“ ‘methodological map’ ”: The quote about the Monte Carlo method being a “netherland at once nowhere and everywhere on the usual methodological map” appears in Peter Louis Galison’s Image and Logic.
7. Extending the Table, Expanding the Cold War
“ ‘Talk of the Town’ section”: The New Yorker item appeared in the April 8, 1950, issue and was written by E. J. Kahn Jr.
“the alarm one last time”: For more details about the experiments that led to elements 94 through 110, and for personal information about the man himself, see Glenn Seaborg’s autobiographies, especially Adventures in the Atomic Age (cowritten with his son Eric). The book is intrinsically interesting because Seaborg was at the center of so much important science and played such a large role in politics for decades. Honestly, though, Seaborg’s cautious writing style makes the book a bit bland at points.
“poisonous nickel smelters”: The information about the lack of trees around Norilsk comes from Time.com, which in 2007 named Norilsk one of the ten most polluted cities in the world. See http://www.time.com/time/specials/2007/article/0,28804,1661031_1661028_1661022,00.html.
“June 2009, copernicium (Cn)”: It covers a bit of the same material as here, but a story I wrote for Slate.com in June 2009 (“Periodic Discussions,” http://www.slate.com/id/2220300/) examines in detail why it took thirteen full years to promote copernicium from provisional element to full member of the periodic table.
8. From Physics to Biology
“they won forty-two”: Besides Segrè, Shockley, and Pauling, the other twelve scientists on the cover of Time were George Beadle, Charles Draper, John Enders, Donald Glaser, Joshua Lederberg, Willard Libby, Edward Purcell, Isidor Rabi, Edward Teller, Charles Townes, James Van Allen, and Robert Woodward.
The Time “Men of the Year” article contained the following words by Shockley on race. He meant them as complimentary, obviously, but his view on Bunche had to have sounded weird even at the time, and in retrospect it’s creepy. “William Shockley, 50, is that rare breed of scientist, a theorist who makes no apology for a consuming interest in the practical applications of his work. ‘Asking how much of a research job is pure and how much applied,’ says Shockley, ‘is like asking how much Negro and white blood Ralph Bunche might have. What’s important is that Ralph Bunche is a great man.’ ”
The article also shows that the legend about Shockley as the main inventor of the transistor was already firmly established:
Hired by Bell Telephone Laboratories right after he graduated from M.I.T. in 1936, theoretical physicist Shockley was one of a team that found a use for what had previously been a scientific parlor stunt: the use of silicon and germanium as a photoelectric device. Along with his partners, Shockley won a Nobel Prize for turning hunks of germanium into the first transistors, the educated little crystals that are fast replacing vacuum tubes in the country’s boom
ing electronics industry.
“of all the damned luck, Ida Noddack”: Overall, Ida Noddack had a spotty run as a chemist. She helped find element seventy-five, but her group’s work with element forty-three was riddled with mistakes. She predicted nuclear fission years before anyone else, but about that same time, she began arguing that the periodic table was a useless relic, because the multiplication of new isotopes was rendering it unwieldy. It’s not clear why Noddack believed that each isotope was its own element, but she did, and she tried to convince others that they should scrap the periodic system.
“ ‘The reason for our blindness is not clear’ ”: The quote from Segrè about Noddack and fission comes from his biography Enrico Fermi: Physicist.
“a malfunctioning molecule”: Pauling (with colleagues Harvey Itano, S. Jonathan Singer, and Ibert Wells) determined that defective hemoglobin causes sickle-cell anemia by running defective cells through a gel in an electric field. Cells with healthy hemoglobin traveled one way in the electric field, while sickle cells moved in the opposite direction. This meant that the two types of molecules had opposite electric charges, a difference that could arise only on a molecular, atom-by-atom level.
Funnily enough, Francis Crick later cited the paper in which Pauling laid out his theory about the molecular basis of sickle-cell anemia as a major influence on him, since it was exactly the sort of nitty-gritty molecular biology that interested Crick.
“a molecular appendix”: Interestingly, biologists are slowly coming back around to their original view from Miescher’s day that proteins are the be-all and end-all of genetic biology. Genes occupied scientists for decades, and they’ll never really go away. But scientists now realize that genes cannot account for the amazing complexity of living beings and that far more is going on. Genomics was important fundamental work, but proteomics is where there’s real money to be made.
“DNA was”: To be scrupulous, the 1952 virus experiments with sulfur and phosphorus, conducted by Alfred Hershey and Martha Chase, were not the first to prove that DNA carries genetic information. That honor goes to work with bacteria done by Oswald Avery, published in 1944. Although Avery illuminated the true role of DNA, his work was not widely believed at first. People were beginning to accept it by 1952, but only after the Hershey-Chase experiments did people such as Linus Pauling really get involved in DNA work.
People often cite Avery—and Rosalind Franklin, who unwittingly told Watson and Crick that DNA was a double helix—as prime examples of people who got locked out of Nobel Prizes. That’s not quite accurate. Those two scientists never won, but both had died by 1958, and no one won a Nobel Prize for DNA until 1962. Had they still been alive, at least one of them might have shared in the spoils.
“James Watson and Francis Crick”: For primary documents related to Pauling and his competition with Watson and Crick, see the wonderful site set up by Oregon State University, which has archived and posted the contents of hundreds of personal papers and letters by Pauling and also produced a documentary history called “Linus Pauling and the Race for DNA” at http://osulibrary.oregonstate.edu/specialcollections/coll/pauling/dna/index.html.
“before Pauling recovered”: After the DNA debacle, Ava Pauling, Linus’s wife, famously scolded him. Assuming that he would decipher DNA, Pauling had not broken much of a sweat on his calculations at first, and Ava lit into him: “If [DNA] was such an important problem, why didn’t you work harder at it?” Even so, Linus loved her deeply, and perhaps one reason he stayed at Cal Tech so long and never transferred his allegiance to Berkeley, even though the latter was a much stronger school at the time, was that one of the more prominent members of the Berkeley faculty, Robert Oppenheimer, later head of the Manhattan Project, had tried to seduce Ava, which made Linus furious.
“the Nobel Prize in Physics”: As one last punch in the gut, even Segrè’s Nobel Prize was later tainted by accusations (possibly unfounded) that he stole ideas while designing the experiments to discover the antiproton. Segrè and his colleague, Owen Chamberlain, acknowledged working with the combative physicist Oreste Piccioni on methods to focus and guide particle beams with magnets, but they denied that Piccioni’s ideas were of much use, and they didn’t list him as an author on a crucial paper. Piccioni later helped discover the antineutron. After Segrè and Chamberlain won the prize in 1959, Piccioni remained bitter about the slight for years and finally filed a $125,000 lawsuit against them in 1972—which a judge threw out not for lack of scientific standing but because it had been filed more than a decade after the fact.
From the New York Times obituary of Piccioni on April 27, 2002: “ ‘He’d break down your front door and tell you he’s got the best idea in the world,’ said Dr. William A. Wenzel, a senior scientist emeritus at Lawrence Berkeley National Laboratory who also worked on the antineutron experiment. ‘Knowing Oreste, he has a lot of ideas; he throws them out a dozen a minute. Some of them are good, some of them aren’t. Nevertheless, I felt he was a good physicist and he contributed to our experiment.’ ”
9. Poisoner’s Corridor
“a gruesome record”: People still die of thallium poisoning today. In 1994, Russian soldiers working at an old cold war weapons depot found a canister of white powder laced with this element. Despite not knowing what it was, they powdered their feet with it and blended it with their tobacco. A few soldiers reportedly even snorted it. All of them came down with a mysterious, entirely unforeseeable illness, and a few died. On a sadder note, two children of Iraqi fighter pilots died in early 2008 after eating a birthday cake laced with thallium. The motive for the poisoning was unclear, although Saddam Hussein had used thallium during his dictatorship.
“in his mother’s backyard”: Various newspapers in Detroit have tracked David Hahn over the years, but for the most detailed account of Hahn’s story, see Ken Silverstein’s article in Harper’s magazine, “The Radioactive Boy Scout” (November 1998). Silverstein later expanded the article into a book of the same name.
10. Take Two Elements, Call Me in the Morning
“a cheaper, lighter copper nose”: In addition to studying the crust around Brahe’s fake nose, the archaeologists who dug him up also found signs of mercury poisoning in his mustache—probably a result of his active research into alchemy. The usual story of Brahe’s demise is that he died of a ruptured bladder. One night at a dinner party with some minor royalty, Brahe drank too much, but he refused to get up and go to the bathroom because he thought leaving the table before his social superiors did would be rude. By the time he got home, hours later, he couldn’t pee any-more, and he died eleven excruciating days later. The story has become a legend, but it’s possible that mercury poisoning contributed as much or more to the astronomer’s death.
“are copper-coated”: The elemental compositions of U.S. coins: New pennies (since 1982) are 97.5 percent zinc but have a thin copper coating, to sterilize the part you touch. (Old pennies were 95 percent copper.) Nickels are 75 percent copper, the balance nickel. Dimes, quarters, and half-dollars are 91.67 percent copper, the balance nickel. Dollar coins (besides special-issue gold coins) are 88.5 percent copper, 6 percent zinc, 3.5 percent manganese, and 2 percent nickel.
“one-oared rowboats”: Some further facts about vanadium: Some creatures (no one knows why) use vanadium in their blood instead of iron, which turns their blood red or apple green. It can also turn human tongues green. When sprinkled into steel, vanadium greatly strengthens the alloy without adding much weight (much like molybdenum and tungsten; see chapter 5). In fact, Henry Ford once boomed: “Why, without vanadium there would be no automobiles!”
“forced to double up”: The bus metaphor for how electrons fill their shells one at a time until “someone” is absolutely forced to double up is one of the best in chemistry, both folksy and accurate. It originated with Wolfgang Pauli, who discovered the Pauli “exclusion principle” in 1925.
“surgical strikes without surgery”: Besides gadolinium, gold is often cited as the best h
ope for treating cancer. Gold absorbs infrared light that otherwise passes through the body, and grows extremely warm as it does so. Delivering gold-coated particles into tumor cells could allow doctors to fry the tumors without damaging the surrounding tissue. This method was invented by John Kanzius, a businessman and radio technician who underwent thirty-six rounds of chemotherapy for leukemia beginning in 2003. He felt so nauseated and beaten up by the chemo—and was so filled with despair at the sight of the children with cancer he encountered in his hospital—that he decided there had to be a better way. In the middle of the night, he came up with the idea of heating metal particles, and he built a prototype machine using his wife’s baking pans. He tested it by injecting half of a hot dog with a solution of dissolved metals and placing it in a chamber of intense radio waves. The tampered-with side of the hot dog fried, while the other half remained cold.
“selling it as a supplement”: In the May 2009 issue of Smithsonian, the article “Honorable Mentions: Near Misses in the Genius Department” describes one Stan Lindberg, a daringly experimental chemist who took it upon himself “to consume every single element of the periodic table.” The article notes, “In addition to holding the North American record for mercury poisoning, his gonzo account of a three-week ytterbium bender… (‘Fear and Loathing in the Lanthanides’) has become a minor classic.”
I spent a half hour hungrily trying to track down “Fear and Loathing in the Lanthanides” before realizing I’d been had. The piece is pure fiction. (Although who knows? Elements are strange creatures, and ytterbium might very well get you high.)
“self-administer ‘drugs’ such as silver once more”: Wired magazine ran a short news story in 2003 about the online reemergence of “silver health scams.” The money quote: “Meanwhile, doctors across the country have seen a surge in argyria cases. ‘In the last year and a half, I’ve seen six cases of silver poisoning from these so-called health supplements,’ said Bill Robertson, the medical director of the Seattle Poison Center. ‘They were the first cases I’d seen in fifty years of medical practice.’ ”
Sam Kean Page 33