Wonders of the Universe

Home > Other > Wonders of the Universe > Page 5
Wonders of the Universe Page 5

by Professor Brian Cox


  A full explanation of this is beyond the scope of this book, suffice to say that Einstein was forced into this bold move primarily because Maxwell’s equations for electricity and magnetism were incompatible with Newton’s 200-year-old laws of motion. Einstein abandoned the Newtonian ideas of space and time as separate entities and merged them. In Einstein’s theory there is a special speed built into the structure of spacetime itself that everyone must agree on, irrespective of how they are moving relative to each other. This special speed is a universal constant of nature that will always be measured as precisely 299,792,458 metres (983,571,503 feet) per second, at all times and all places in the Universe, no matter what they are doing. This is critical in Einstein’s theory because it stops us doing something strange in spacetime; if past/future is simply another direction like north/south, why can’t we wander backwards and forwards in it? Why can we only travel into the future, not the past?

  In Einstein’s theory of relativity it is the existence of this unanimously agreed special speed that makes time direction different to that of space and prevents time travel. In this sense, the special speed is built into the fabric of space and time itself and plays a deep role in the structure of our universe. What does it have to do with the speed of light? Nothing much! There is a reason why light goes at this speed, and it seems to be a complete coincidence. In Einstein’s theory, anything that has no mass is compelled to travel at the special speed through space. Conversely, anything that has mass is compelled to travel slower than this speed. Particles of light, photons, have no mass, so they travel at the speed of light. There is no deep reason we know of why photons have to be massless particles, so no deep reason why light travels at the speed of light! We only call the special speed ‘light speed’ because it was discovered by measuring the speed of light.

  The key point is that the speed of light is a fundamental property of the Universe because it is built into the fabric of space and time itself. Travelling faster than this speed is impossible, and even travelling at it is impossible if you have mass. It is this property of the Universe that protects the past from the future and prevents time travel into the past

  TIME TRAVEL

  Without realising it, we are all travelling back in time by the most miniscule amount. The consequence of light travelling fast, but not infinitely fast, is that you see everything as it was in the past. In everyday life the consequences of this strange fact are intriguing but irrelevant. It may be strictly true that you are seeing your reflection in the mirror in the past, but since it takes light only one thousand millionths of a second to travel thirty centimetres (twelve inches), the delay is all but invisible. However, the further away we get from an object, the greater the delay becomes. Although over tiny distances the effect is always utterly negligible, it should be obvious that once we lift our eyes upwards to the skies and become astronomers, profound consequences await us.

  A rare sight; in this picture Earth’s crescent moon is visible above Venus (bottom) and Jupiter (right) in the night sky. As light takes longer to reach Earth from other planets and moons, depending on how far away they are, we see further into their respective pasts.

  © JASON REED/Reuters/CORBIS

  Look up at the Moon and you are looking at our closest neighbour a second in the past, because it is on average around 380,000 kilometres (236,120 miles) away; perceptible certainly, but not important. However, take a look at the Sun and you really are beginning to bathe in the past.

  The Sun is 150 million kilometres away (93 million miles) – this is very close by cosmic standards, but at these distances the speed of light starts to feel rather pedestrian. We are seeing the Sun as it was eight minutes in the past. This has the strange consequence that if we were to magically remove the Sun, we would still feel its heat on our faces and still see its image shining brightly in the sky for eight minutes. And because the speed of light is actually the maximum speed at which any influence in the Universe can travel, this delay applies to gravity as well. So if the Sun magically disappeared, we would not only continue to see it for eight minutes, we would continue to orbit around it too. We are genuinely looking back in time every time we look at the Sun.

  However, this is just the beginning of our time travelling. As we look up at the planets and moons in our solar system, we move further and further into the past. The light from Mars takes between four and twenty minutes to reach Earth, depending on the relative positions of Earth and Mars in their orbits around the Sun. This has a significant impact on the way we design and operate vehicles intended for driving on the surface of Mars. When Mars is at its furthest point from Earth it would take at least forty minutes to be told that a Mars Rover was driving over a cliff and then be able to tell it to stop, so Mars Rovers need to be able to make up their own minds in such situations or must do things very slowly. Jupiter, at its closest point to Earth, is around thirty-two minutes away, and by the time we journey to the outer reaches of our solar system, the light from the most distant planet, Neptune, takes around four hours to make the journey. At the very edge of the Solar System, the round-trip travel time for radio signals sent and received by Voyager 1 on its journey into interstellar space is currently thirty-one hours, fifty-two minutes and twenty-two seconds, as of September 2010.

  But look beyond our solar system and the time it takes for light to travel from our nearest neighbouring stars is no longer measured in hours or days, but years. We see Alpha Centauri, the nearest star visible with the naked eye, as it was four years in the past, and as the cosmic distances mount, so the journey into the past becomes ever deeper

  TO THE DAWN OF TIME

  When filming a series like Wonders of the Universe, the locations are chosen to be visually spectacular, but they must also have a narrative that enhances the explanation of the scientific ideas we want to convey. Occasionally, the locations deliver more. There is a resonance, a symbiosis between science and place that serves to amplify the facts and generates something deeper and more profound on screen. For me, the Great Rift Valley was such a place.

  We arrived in Tanzania on 10 May 2010 for the first day of filming. After a brief overnight stay close to the airport at Kilimanjaro, we were driven out into the Serengeti in vintage dark green Toyota Land Cruisers, complete with exaggerated front cattle bars and shovels tied to the rear doors. The landscape is unmistakably African; the warm, damp light still wet from the rains illumines plains seemingly too vast to fit on our planet. The horizon, darkened by scattered thunderclouds stark against the early summer skies, is simply more distant than it should be. The rains have brought with them journeys, and as you drive you experience first-hand the thousand-mile migration of the Serengeti wildebeest. The relentless advance of these herds creates ruts in the drying savannah along the precise and ancient roads that always seem to run at right angles to your direction of travel, shaking the Land Cruisers to the edge of their design tolerance. Zebras, giraffe and Grant’s gazelles graze, unconcerned, as our intrepid film crew rattles by.

  * * *

  The Great Rift Valley is not just an extraordinary geological feature…there is more to this place because the echoes of the history of humanity ring louder across these plains than anywhere else on the planet.

  * * *

  The Great Rift Valley, Tanzania, is one of the most spectacular geological locations on Earth. The summer skies were darkened by rainclouds, but these soon departed to reveal dusty, unmistakably African landscapes and breathtaking vistas.

  The Great Rift Valley, Tanzania, is one of the most spectacular geological locations on Earth. The summer skies were darkened by rainclouds, but these soon departed to reveal dusty, unmistakably African landscapes and breathtaking vistas.

  Our camp is idyllic by the strictest definition of the word. Khaki tents nestle beneath acacia trees in the shadow of a giant copper-striped rock populated by a tribe of itinerant baboons intent on stealing our tape stock. Fortunately, we are guarded by the Masai, who, all cliché asid
e, are as tough as hell and scare not only the baboons but also the Serengeti lions and the BBC in equal amount.

  So much for the visuals; the reason for the resonance of this place lies in the deep past of this dramatic landscape of life. The Great Rift Valley is not just an extraordinary geological feature that stretches 6,000 kilometres (3,700 miles) from Syria to Mozambique; there is more to this place because the echoes of the history of humanity ring louder across these plains than anywhere else on the planet. To walk this earth is to walk in the footsteps of the true ancients. Ancestors like Lucy, one of the most important fossils ever discovered, a skeleton uncovered in the Ethiopian section of the valley in 1974 by Donald Johanson. Lucy is 3.2 million years old; the remains of an Australopithecus, an extinct hominid species many anthropologists believe links directly to our own heritage. Further down the rift, in Tanzania, more closely related human ancestors have been discovered. In the early 1960s, Mary and Louis Leakey unearthed the remains of the earliest known species of our genus, Homo. Homo habilis is thought to have been a direct descendant of Australopithecus, and may be the first of our ancestors to have made tools. It’s all in the mind, I suppose, but sitting around a fire on a cool evening in the Serengeti I felt as if I had returned to the place where I had been born after many years away. There is something about geographic origins that resonates, over a lifetime or a hundred thousand lifetimes

  FINDING ANDROMEDA

  The connection between the history of the Serengeti and the science of light is a dimly glowing jewel in the velvet Tanzanian sky. With no cities to pollute the darkness, the plains of the African night are bathed in the light of a billion suns. The glowing arc of the Milky Way Galaxy dominates the sky, a silver mist of stars so numerous, they are impossible to count. Every single point of light and every patch of magnificent mist visible to the unaided human eye have as their origin a star in our own galaxy, or the misty clouds known as the Magellanic clouds – two small dwarf galaxies in orbit around the Milky Way. All except for one…

  To find it, you first need to recognise the distinctive ‘W’ shape of the constellation of Cassiopeia. It sits on the opposite side of Polaris, the North Star, to the constellation Ursa Major, otherwise known as The Great Bear or The Plough. Cassiopeia, being so close to Polaris, is a constant feature in the northern skies – it simply rotates around the pole once every twenty-four hours and never sets below the horizon at high latitudes. If in your mind’s eye you put the ‘W’ of Cassiopeia upright, then just beneath the rightmost ‘V’ you will be able to see quite a large, faint, misty patch in the sky. It is comparable in brightness to most of the stars surrounding it, although dimmer than the bright stars of Cassiopeia. This unremarkable little patch is, in my view, the most intellectually stunning object you can see with the naked eye, because it is an entire galaxy beyond the Milky Way. It is called Andromeda, and is our nearest galactic neighbour. It is home to a trillion suns, over twice as many stars as our galaxy. It is roughly twenty-five million million million kilometres (fifteen million million million miles) away, and here is the connection.

  This Homo habilis skull was found in the Olduvai Gorge in Tanzania and is believed to be around 1.8 million years old.

  PASCAL GOETGHELUCK / SCIENCE PHOTO LIBRARY

  Two and a half million years ago, when our distant relative Homo habilis was foraging for food across the Tanzanian savannah, a beam of light left the Andromeda Galaxy and began its journey across the Universe. As that light beam raced across space at the speed of light, generations of pre-humans and humans lived and died; whole species evolved and became extinct, until one member of that unbroken lineage, me, happened to gaze up into the sky below the constellation we call Cassiopeia and focus that beam of light onto his retina. A two-and-a-half-billion-year journey ends by creating an electrical impulse in a nerve fibre, triggering a cascade of wonder in a complex organ called the human brain that didn’t exist anywhere in the Universe when the journey began

  AlltheSky.com

  On autumn and winter evenings, the spiral galaxy M31 (Andromeda) is visible to the naked eye in northern skies. To locate it, you first need to identify Cassiopeia, and its distinctive ‘W’ shape. Using the point of the ‘V’ on the right-hand side as an arrow, look beneath it for a large misty patch in the sky.

  NASA

  Observing the night skies with the naked eye can only take us so far on our journey to discover and understand the wonders of our universe. Advances in technology have brought us crafts that can take humans on expeditions beyond our planet, but also sophisticated equipment that has changed our view of the Universe entirely.

  The Hubble Space Telescope being repaired by an astronaut from Endeavour. This eleven-tonne telescope has allowed astronomers and scientists to see further into our universe than ever before.

  NASA

  THE HUBBLE TELESCOPE

  The naked eye can only allow us to travel back in time to the beginnings of our species; a mere 2.5 million light years away. Until recently, Andromeda was the furthest we could look back unaided, but modern, more powerful telescopes now enable us to peer deeper and deeper into space, so that we can travel way beyond Andromeda, capturing a bounty of messengers laden with information from the far distant past.

  In the history of astronomy, no telescope since Galileo’s original has a greater impact than the eleven-tonne machine called Hubble. The Hubble Space Telescope was conceived in the 1970s and given the go-ahead by Congress during the tenure of President Jimmy Carter, with a launch date originally set for 1983. Named after Edwin Hubble, the man who discovered that the Universe is expanding, this complex project was plagued with problems from the start. By 1986, the telescope was ready for lift off, three years later than planned, and the new launch date was set for October of that year. But when the Challenger Space Shuttle broke apart seventy-three seconds into its launch in January 1986, the shutters came down not only on Hubble, but on the whole US space programme. Locked away in a clean room for the next four years, the storage costs alone for keeping Hubble in an envelope of pure nitrogen came to $6 million dollars a month.

  With the restart of the shuttle programme, the new launch date was set for 24 April 1990 and, seven years behind schedule, shuttle mission STS-31 launched Hubble into its planned orbit 600 kilometres (370 miles) above Earth. The promise of Hubble was simple: images from the depths of space unclouded by the distorting effects of Earth’s atmosphere. A new eye was about to open and gaze at the pristine heavens, but within weeks it was clear that Hubble’s vision was anything but 20:20. The returning images showed there was a significant optical flaw, and after preliminary investigations it slowly dawned on the Hubble team that after decades of planning and billions of dollars, the Hubble Space Telescope had been launched with a primary mirror that was minutely but disastrously misshapen. Designed to be the most perfect mirror ever constructed, Hubble’s shining retina was 2.2 thousandths of a millimetre out of shape, and as a result its vision of the Universe was ruined.

  Such was the value and promise of Hubble that an audacious mission was immediately conceived to fix it. This was possible because Hubble was designed to be the first, and to date only, telescope to be serviceable by astronauts in space. A new mirror could not be fitted, but by precisely calculating the disruptive effect of the faulty mirror, NASA engineers realised that they could correct the problem by fitting Hubble with spectacles.

  The Hubble Space Telescope has had a greater impact on astronomy than any other telescope. This huge telescope orbits Earth, sending back images of parts of the Universe that would otherwise remain invisible to us. The telescope has been orbiting Earth since 1990, and its revolutionary and revelatory journey continues to this day.

  NASA

  In December 1993, astronauts from the Shuttle Endeavour spent ten days refitting the telescope with new corrective equipment. In charge of the repairs, by far the most complex task ever undertaken by humans in Earth orbit, was astronaut Story Musgrave. Already a vetera
n of four shuttle flights, a test pilot with 16,000 flying hours in 160 aircraft types, ex-US Marine and trauma surgeon with seven graduate degrees, Musgrave is quite an extraordinary example of what people can do if they put their minds to it. He is a metaphor for the space programme itself; in Musgrave’s own words, this is what restoring sight to Hubble meant. ‘Majesty and magnificence of Hubble as a starship, a spaceship. To work on something so beautiful, to give it life again, to restore it to its heritage, to its conceived power. The work was worth it – significant. The passion was in the work, the passion was in the potentiality of Hubble Space Telescope.’

  * * *

  Seven years behind schedule, shuttle mission STS-31 launched Hubble… A new eye was about to open and gaze at the pristine heavens…

  * * *

  On 13 January 1994, NASA opened Hubble’s corrected eye to the Universe and opened the eyes of our planet to the extraordinary beauty of the cosmos. A decade late and costing around $6 billion dollars, it has proved to be worth every cent

  The Hubble Space Telescope has brought us incredible images of other galaxies that we might never have been able to see. This shot of the spiral galaxy NGC1300 is one of the largest images taken by the telescope.

  NASA

  The Hubble Ultra Deep Field is one of the most spectacular and important pictures taken by the Hubble Space Telescope. This image shows nearly 10,000 galaxies of various ages, sizes, shapes and colours. The nearest galaxies appear larger and brighter, but there are also around one hundred galaxies here that appear as small red objects. These are the most remarkable features in this image; these are among the most distant objects we have ever seen.

 

‹ Prev