For millennia beyond computation, the sea’s waves have battered the coastlines of the world with erosive effect, here cutting back a cliff, there stripping away tons of sand from a beach, and yet again, in a reversal of their destructiveness, building up a bar or a small island. Unlike the slow geologic changes that bring about the flooding of half a continent, the work of the waves is attuned to the brief span of human life, and so the sculpturing of the continent’s edge is something each of us can see for ourselves.
The high clay cliff of Cape Cod, rising at Eastham and running north until it is lost in the sand dunes near Peaked Hill, is wearing back so fast that half of the ten acres which the Government acquired as a site for the Highland Light has disappeared, and the cliffs are said to be receding about three feet a year. Cape Cod is not old, in geologic terms, being the product of the glaciers of the most recent Ice Age, but apparently the waves have cut away, since its formation, a strip of land some two miles wide. At the present rate of erosion, the disappearance of the outer cape is foredoomed; it will presumably occur in another 4000 or 5000 years.
The sea’s method on a rocky coast is to wear it down by grinding, to chisel out and wrench away fragments of rock, each of which becomes a tool to wear away the cliff. And as masses of rock are undercut, a whole huge mass will fall into the sea, there to be ground in the mill of the surf and to contribute more weapons for the attack. On a rocky shore this grinding and polishing of rocks and fragments of rocks goes on incessantly and audibly, for the breakers on such a coast have a different sound from those that have only sand to work with—a deep-toned mutter and rumble not easily forgotten, even by one who strolls casually along such a beach. Few people have heard the sounds of the surf mill practically from within the sea, as described by Henwood after his visit to a British mine extending out under the ocean:
When standing beneath the base of the cliff, and in that part of the mine where but nine feet of rock stood between us and the ocean, the heavy roll of the larger boulders, the ceaseless grinding of the pebbles, the fierce thundering of the billows, with the crackling and boiling as they rebounded, placed a tempest in its most appalling form too vividly before me ever to be forgotten. More than once doubting the protection of our rocky shield we retreated in affright; and it was only after repeated trials that we had confidence to pursue our investigations.*
Great Britain, an island, has always been conscious of that ‘powerful marine gnawing’ by which her coasts are eaten away. An old map dated 1786 and prepared by the county surveyor, John Tuke, gives a long list of lost towns and villages on the Holderness Coast. Among them are notations of Hornsea Burton, Hornsea Beck, and Hartburn— ‘washed away by the sea’; of Ancient Withernsea, Hyde, or Hythe— ‘lost by the sea.’ Many other old records allow comparison of present shorelines with former ones and show astonishing annual rates of cliff erosion on many parts of the coast—up to 15 feet at Holderness, 19 feet between Cromer and Mundesley, and 15 to 45 feet at Southwold. ‘The configuration of the coastline of Great Britain,’ one of her present engineers writes, ‘is not the same for two consecutive days.’
And yet we owe some of the most beautiful and interesting shoreline scenery to the sculpturing effect of moving water. Sea caves are almost literally blasted out of the cliffs by waves, which pour into crevices in the rocks and force them apart by hydraulic pressure. Over the years the widening of fissures and the steady removal of fine rock particles in infinite number result in the excavation of a cave. Within such a cavern the weight of incoming water and the strange suctions and pressures caused by the movements of water in an enclosed space may continue the excavation upward. The roofs of such caves (and of overhanging cliffs) are subjected to blows like those from a battering ram as the water from a breaking wave is hurled upward, most of the energy of the wave passing into this smaller mass of water. Eventually a hole is torn through the roof of the cave, to form a spouting horn. Or, on a narrow promontory, what began as a cave may be cut through from side to side, so that a natural bridge is formed. Later, after years of erosion, the arch may fall, leaving the seaward mass of rock to stand alone—one of the strange, chimneylike formations known as a stack.
The sea waves that have fixed themselves most firmly in the human imagination are the so-called ‘tidal waves.’ The term is popularly applied to two very different kinds of waves, neither of which has any relation to the tide. One is a seismic sea wave produced by undersea earthquakes; the other is an exceptionally vast wind or storm wave—an immense mass of water driven by winds of hurricane force far above the normal high-water line.
Most of the seismic sea waves, now called ‘tsunamis,’ are born in the deepest trenches of the ocean floor. The Japanese, Aleutian, and Atacama trenches have each produced waves that claimed many human lives. Such a trench is, by its very nature, a breeder of earthquakes, being a place of disturbed and uneasy equilibrium, of buckling and warping downward of the sea floor to form the deepest pits of all the earth’s surface. From the historic records of the ancients down to the modern newspaper, the writings of man contain frequent mention of the devastation of coastal settlements by these great waves that suddenly rise out of the sea. One of the earliest of record rose along the eastern shores of the Mediterranean in A.D. 358, passing completely over islands and low-lying shores, leaving boats on the housetops of Alexandria, and drowning thousands of people. After the Lisbon earthquake of 1755, the coast at Cadiz was visited by a wave said to have been 50 feet higher than the highest tide. This came about an hour after the earthquake. The waves from this same disturbance traveled across the Atlantic and reached the West Indies in 9½ hours. In 1868, a stretch of nearly 3000 miles of the western coast of South America was shaken by earthquakes. Shortly after the most violent shocks, the sea receded from the shore, leaving ships that had been anchored in 40 feet of water stranded in mud; then the water returned in a great wave, and boats were carried a quarter of a mile inland.
This ominous withdrawal of the sea from its normal stand is often the first warning of the approach of seismic sea waves. Natives on the beaches of Hawaii on the first of April 1946 were alarmed when the accustomed voice of the breakers was suddenly stilled, leaving a strange quiet. They could not know that this recession of the waves from the reefs and the shallow coastal waters was the sea’s response to an earthquake on the steep slopes of a deep trench off the island of Unimak in the Aleutian chain, more than 2000 miles away; or that in a matter of moments the water would rise rapidly, as though the tide were coming in much too fast, but without surf. The rise carried the ocean waters 25 feet or more above the normal levels of the tide. According to an eyewitness account:
The waves of the tsunami swept toward shore with steep fronts and great turbulence … Between crests the water withdrew from shore, exposing reefs, coastal mud-flats, and harbor bottoms for distances up to 500 feet or more from the normal strand-line. The outflow of the water was rapid and turbulent, making a loud hissing, roaring, and rattling noise. At several places houses were carried out to sea, and in some areas even large rocks and blocks of concrete were carried out onto the reefs … People and their belongings were swept to sea, some being rescued hours later by boats and life rafts dropped from planes.*
In the open ocean the waves produced by the Aleutian quake were only about a foot or two high and would not be noticed from vessels. Their length, however, was enormous, with a distance of about 90 miles between succeeding crests. It took the waves less than five hours to reach the Hawaiian chain, 2300 miles distant, so they must have moved at an average speed of about 470 miles per hour. Along eastern Pacific shores, they were recorded as far into the Southern Hemisphere as Valparaiso, Chile, the distance of 8066 miles from the epicenter being covered by the waves in about 18 hours.
This particular occurrence of seismic sea waves had one result that distinguished it from all its predecessors. It set people to thinking that perhaps we now know enough about such waves and how they behave that a warning s
ystem could be devised which would rob them of the terror of the unexpected. Seismologists and specialists on waves and tides co-operated, and now such a system has been established to protect the Hawaiian Islands. A network of stations equipped with special instruments is scattered over the Pacific from Kodiak to Pago Pago and from Balboa to Palau. There are two phases of the warning system. One is based on a new audible alarm at seismograph stations operated by the United States Coast and Geodetic Survey, which calls instant attention to the fact that an earthquake has occurred. If it is found that the epicenter of the quake is under the ocean and so might produce seismic sea waves, a warning is sent to observers at selected tide stations to watch their gauges for evidence of the passage of the racing tsunamis. (Even a very small seismic sea wave can be identified by its peculiar period, and though it may be small at one place, it may reach dangerous heights at another.) When seismologists in Honolulu are notified that an undersea earthquake has occurred and that its waves have actually been recorded at certain stations, they can calculate when the waves will arrive at any point between the epicenter of the quake and the Hawaiian Islands. They can then issue warnings for the evacuation of beaches and waterfront areas. And so, for the first time in history, there is an organized effort to prevent these ominous waves from racing undetected over the empty spaces of the Pacific, to roar up suddenly on some inhabited shore.*
The storm waves that sometimes rise over low-lying coast lands in hurricane zones belong in the class of wind waves, but unlike the waves of ordinary winds and storms, they are accompanied by a rise of the general water level, called a storm tide. The rise of water is often so sudden that it leaves no possibility of escape. Such storm waves claim about three-fourths of the lives lost by tropical hurricanes. The most notable disasters from storm waves in the United States have been those at Galveston, Texas, on 8 September, 1900, on the lower Florida Keys on 2 and 3 September, 1935, and the catastrophic rise of water accompanying the New England hurricane of 21 September, 1938. The most fearful destruction by hurricane waves within historic time occurred in the Bay of Bengal on 7 October, 1737, when 20,000 boats were destroyed and 300,000 people drowned.*
There are other great waves, usually called ‘rollers,’ that periodically rise on certain coasts and batter them for days with damaging surf. These, too, are wind waves, but they are related to changes in barometric pressure over the ocean, perhaps several thousand miles distant from the beaches on which the waves eventually arrive. Low-pressure areas—like the one south of Iceland—are notorious storm breeders, their winds lashing the sea into great waves. After the waves leave the storm area they tend to become lower and longer and after perhaps thousands of miles of travel across the sea they become transformed into the undulations known as a ground swell. These swells are so regular and so low that often they are unnoticed as they pass through the short, choppy, new-formed waves of other areas. But when a swell approaches a coast and feels beneath it the gradually shoaling bottom, it begins to ‘peak up’ into a high, steep wave; within the surf zone the steepening becomes abruptly accentuated, a crest forms, breaks, and a great mass of water plunges downward.
Winter swell on the west coast of North America is the product of storms that travel south of the Aleutians into the Gulf of Alaska. Swell reaching this same coast during the summer has been traced back to its origin in the Southern Hemisphere belt of the ‘roaring forties,’ several thousand miles south of the equator. Because of the direction of the prevailing winds, the American east coast and the Gulf of Mexico do not receive the swell from far distant storms.
The coast of Morocco has always been particularly at the mercy of swell, for there is no protected harbor from the Strait of Gibraltar southward for some 500 miles. The rollers that visit the Atlantic islands of Ascension, St. Helena, South Trinidad, and Fernando de Noronha are historic. Apparently the same sort of waves occur on the South American coast near Rio de Janeiro, where they are known as resacas; others of kindred nature, having run their course from storms in the west-wind belt of the South Pacific, attack the shores of the Paumotos Islands; still others have been responsible for the well-known ‘surf days’ that plague the Pacific coast of South America. According to Robert Cushman Murphy, it was formerly the custom of shipmasters in the guano trade to demand a special allowance for a certain number of days during which the loading of their vessels would be interrupted by the swell. On such surf days ‘mighty rollers come pouring over the sea wall, and have been known to carry away forty-ton freight cars, to uproot concrete piers, and to twist iron rails like wire.’
The slow progression of swell from its place of origin made it possible for the Moroccan Protectorate to establish a service for the prediction of the state of the sea. This was done in 1921, after long and troublesome experience with wrecked vessels and wharves. Daily telegraphic reports of the condition of the sea give advance notice of troublesome surf days. Warned of the approach of swells, ships in port may seek safety in the open sea. Before this service was established, the port of Casablanca had once been paralyzed for seven months, and St. Helena had seen the wreckage of practically all the ships in her harbor on one or more occasions. Modern wave-recording instruments like those now being tested in England and the United States will soon provide even greater security for all such shores.
It is always the unseen that most deeply stirs our imagination, and so it is with waves. The largest and most awe-inspiring waves of the ocean are invisible; they move on their mysterious courses far down in the hidden depths of the sea, rolling ponderously and unceasingly. For many years it was known that the vessels of Arctic expeditions often became almost trapped and made headway only with difficulty in what was called ‘dead water’—now recognized as internal waves at the boundary between a thin surface layer of fresh water and the underlying salt water. In the early 1900’s several Scandinavian hydrographers called attention to the existence of submarine waves, but another generation was to elapse before science had the instruments to study them thoroughly.
Now, even though mystery still surrounds the causes of these great waves that rise and fall, far below the surface, their ocean-wide occurrence is well established. Down in deep water they toss submarines about, just as their surface counterparts set ships to rolling. They seem to break against the Gulf Stream and other strong currents in a deep-sea version of the dramatic meeting of surface waves and opposing tidal currents. Probably internal waves occur wherever there is a boundary between layers of dissimilar water, just as the waves we see occur at the boundary between air and sea. But these are waves such as never moved at the surface of the ocean. The water masses involved are unthinkably great, some of the waves begin as high as 300 feet.
Of their effect on fishes and other life of the deep sea we have only the faintest conception. Swedish scientists say that the herring are carried or drawn into some of the fiords of Sweden when the deep internal waves roll over the submerged sills and into the fiords. In the open ocean, we know that the boundary between water masses of different temperatures or salinities is often a barrier that may not be passed by living creatures, delicately adjusted to certain conditions. Do these creatures themselves then move up and down with the roll of the deep waves? And what happens to the bottom fauna of the continental slope, adjusted, it may be, to water of unchanging warmth? What is their fate when the waves move in from a region of arctic cold, rolling like a storm surf against those deep, dark slopes? At present we do not know. We can only sense that in the deep and turbulent recesses of the sea are hidden mysteries far greater than any we have solved.
* From Transactions, Geol. Soc. Cornwall, vol. v, 1843.
* From Annual Rept., Smithsonian Inst., 1947.
* From the time of its establishment up to 1960, the warning system has issued eight alerts warning residents of the Hawaiian Islands of the approach of seismic waves. On three of these occasions, waves of major proportions have in fact struck the islands. None have been so large or so destructive, how
ever, as those of May 23, 1960, which spread out across the Pacific from their place of origin in violent earthquakes on the coast of Chile. Without such warning the loss of life would almost certainly have been enormous. As soon as the seismograph at the Honolulu Observatory recorded the first of the Chilean quakes the system went into operation. Reports from the scattered tide stations gave ample notice that a seismic wave had formed and was spreading out across the Pacific. By early news bulletins and later by an official “sea wave warning” the Observatory alerted residents of the area and predicted the time the wave would arrive and the areas to be affected. These predictions proved to be accurate within reasonable limits, and although property damage was heavy, loss of life was limited to the few who disregarded the warnings. Sea wave activity was reported as far west as New Zealand and as far north as Alaska. The Japanese coasts were struck by heavy waves. Although the United States warning system does not now include other nations, officials at Honolulu sent to Japan warnings of the wave which, unfortunately, were disregarded.
The warning system now (in 1960) consists of eight seismograph stations at points on both eastern and western shores of the Pacific and on certain islands, and of twenty widely scattered wave stations, four of which are equipped with automatic wave detectors. The Coast and Geodetic Survey feels that additional wave-reporting tide stations would improve the effectiveness of the system. Its principal defect now, however, is the fact that it is not possible to predict the height of a wave as it reaches any particular shore, and therefore the same alert must be issued for all approaching seismic waves. Research on methods of forecasting wave height is therefore needed. Even with its present limitations, however, the system has filled so great a need that there is strong international interest in extending it to other parts of the world.
The Sea Around Us Page 15