by Aristotle
Can it be that the incommensurability of two things in respect of any attribute is due to a difference in that which is primarily capable of carrying the attribute? Thus horse and dog are so commensurable that we may say which is the whiter, since that which primarily contains the whiteness is the same in both, viz. the surface: and similarly they are commensurable in respect of size. But water and speech are not commensurable in respect of clearness, since that which primarily contains the attribute is different in the two cases. It would seem, however that we must reject this solution, since clearly we could thus make all equivocal attributes univocal and say merely that that contains each of them is different in different cases: thus 'equality', 'sweetness', and 'whiteness' will severally always be the same, though that which contains them is different in different cases. Moreover, it is not any casual thing that is capable of carrying any attribute: each single attribute can be carried primarily only by one single thing.
Must we then say that, if two things are to be commensurable in respect of any attribute, not only must the attribute in question be applicable to both without equivocation, but there must also be no specific differences either in the attribute itself or in that which contains the attribute-that these, I mean, must not be divisible in the way in which colour is divided into kinds? Thus in this respect one thing will not be commensurable with another, i.e. we cannot say that one is more coloured than the other where only colour in general and not any particular colour is meant; but they are commensurable in respect of whiteness.
Similarly in the case of motion: two things are of the same velocity if they occupy an equal time in accomplishing a certain equal amount of motion. Suppose, then, that in a certain time an alteration is undergone by one half of a body's length and a locomotion is accomplished the other half: can be say that in this case the alteration is equal to the locomotion and of the same velocity? That would be absurd, and the reason is that there are different species of motion. And if in consequence of this we must say that two things are of equal velocity if they accomplish locomotion over an equal distance in an equal time, we have to admit the equality of a straight line and a circumference. What, then, is the reason of this? Is it that locomotion is a genus or that line is a genus? (We may leave the time out of account, since that is one and the same.) If the lines are specifically different, the locomotions also differ specifically from one another: for locomotion is specifically differentiated according to the specific differentiation of that over which it takes place. (It is also similarly differentiated, it would seem, accordingly as the instrument of the locomotion is different: thus if feet are the instrument, it is walking, if wings it is flying; but perhaps we should rather say that this is not so, and that in this case the differences in the locomotion are merely differences of posture in that which is in motion.) We may say, therefore, that things are of equal velocity in an equal time they traverse the same magnitude: and when I call it 'the same' I mean that it contains no specific difference and therefore no difference in the motion that takes place over it. So we have now to consider how motion is differentiated: and this discussion serves to show that the genus is not a unity but contains a plurality latent in it and distinct from it, and that in the case of equivocal terms sometimes the different senses in which they are used are far removed from one another, while sometimes there is a certain likeness between them, and sometimes again they are nearly related either generically or analogically, with the result that they seem not to be equivocal though they really are.
When, then, is there a difference of species? Is an attribute specifically different if the subject is different while the attribute is the same, or must the attribute itself be different as well? And how are we to define the limits of a species? What will enable us to decide that particular instances of whiteness or sweetness are the same or different? Is it enough that it appears different in one subject from what appears in another? Or must there be no sameness at all? And further, where alteration is in question, how is one alteration to be of equal velocity with another? One person may be cured quickly and another slowly, and cures may also be simultaneous: so that, recovery of health being an alteration, we have here alterations of equal velocity, since each alteration occupies an equal time. But what alteration? We cannot here speak of an 'equal' alteration: what corresponds in the category of quality to equality in the category of quantity is 'likeness'. However, let us say that there is equal velocity where the same change is accomplished in an equal time. Are we, then, to find the commensurability in the subject of the affection or in the affection itself? In the case that we have just been considering it is the fact that health is one and the same that enables us to arrive at the conclusion that the one alteration is neither more nor less than the other, but that both are alike. If on the other hand the affection is different in the two cases, e.g. when the alterations take the form of becoming white and becoming healthy respectively, here there is no sameness or equality or likeness inasmuch as the difference in the affections at once makes the alterations specifically different, and there is no unity of alteration any more than there would be unity of locomotion under like conditions. So we must find out how many species there are of alteration and of locomotion respectively. Now if the things that are in motion-that is to say, the things to which the motions belong essentially and not accidentally-differ specifically, then their respective motions will also differ specifically: if on the other hand they differ generically or numerically, the motions also will differ generically or numerically as the case may be. But there still remains the question whether, supposing that two alterations are of equal velocity, we ought to look for this equality in the sameness (or likeness) of the affections, or in the things altered, to see e.g. whether a certain quantity of each has become white. Or ought we not rather to look for it in both? That is to say, the alterations are the same or different according as the affections are the same or different, while they are equal or unequal according as the things altered are equal or unequal.
And now we must consider the same question in the case of becoming and perishing: how is one becoming of equal velocity with another? They are of equal velocity if in an equal time there are produced two things that are the same and specifically inseparable, e.g. two men (not merely generically inseparable as e.g. two animals). Similarly one is quicker than the other if in an equal time the product is different in the two cases. I state it thus because we have no pair of terms that will convey this 'difference' in the way in which unlikeness is conveyed. If we adopt the theory that it is number that constitutes being, we may indeed speak of a 'greater number' and a 'lesser number' within the same species, but there is no common term that will include both relations, nor are there terms to express each of them separately in the same way as we indicate a higher degree or preponderance of an affection by 'more', of a quantity by 'greater.'
5
Now since wherever there is a movent, its motion always acts upon something, is always in something, and always extends to something (by 'is always in something' I mean that it occupies a time: and by 'extends to something' I mean that it involves the traversing of a certain amount of distance: for at any moment when a thing is causing motion, it also has caused motion, so that there must always be a certain amount of distance that has been traversed and a certain amount of time that has been occupied). then, A the movement have moved B a distance G in a time D, then in the same time the same force A will move 1/2B twice the distance G, and in 1/2D it will move 1/2B the whole distance for G: thus the rules of proportion will be observed. Again if a given force move a given weight a certain distance in a certain time and half the distance in half the time, half the motive power will move half the weight the same distance in the same time. Let E represent half the motive power A and Z half the weight B: then the ratio between the motive power and the weight in the one case is similar and proportionate to the ratio in the other, so that each force will cause the same distance to be traversed in the same time. But
if E move Z a distance G in a time D, it does not necessarily follow that E can move twice Z half the distance G in the same time. If, then, A move B a distance G in a time D, it does not follow that E, being half of A, will in the time D or in any fraction of it cause B to traverse a part of G the ratio between which and the whole of G is proportionate to that between A and E (whatever fraction of AE may be): in fact it might well be that it will cause no motion at all; for it does not follow that, if a given motive power causes a certain amount of motion, half that power will cause motion either of any particular amount or in any length of time: otherwise one man might move a ship, since both the motive power of the ship-haulers and the distance that they all cause the ship to traverse are divisible into as many parts as there are men. Hence Zeno's reasoning is false when he argues that there is no part of the millet that does not make a sound: for there is no reason why any such part should not in any length of time fail to move the air that the whole bushel moves in falling. In fact it does not of itself move even such a quantity of the air as it would move if this part were by itself: for no part even exists otherwise than potentially.
If on the other hand we have two forces each of which separately moves one of two weights a given distance in a given time, then the forces in combination will move the combined weights an equal distance in an equal time: for in this case the rules of proportion apply.
Then does this hold good of alteration and of increase also? Surely it does, for in any given case we have a definite thing that cause increase and a definite thing that suffers increase, and the one causes and the other suffers a certain amount of increase in a certain amount of time. Similarly we have a definite thing that causes alteration and a definite thing that undergoes alteration, and a certain amount, or rather degree, of alteration is completed in a certain amount of time: thus in twice as much time twice as much alteration will be completed and conversely twice as much alteration will occupy twice as much time: and the alteration of half of its object will occupy half as much time and in half as much time half of the object will be altered: or again, in the same amount of time it will be altered twice as much.
On the other hand if that which causes alteration or increase causes a certain amount of increase or alteration respectively in a certain amount of time, it does not necessarily follow that half the force will occupy twice the time in altering or increasing the object, or that in twice the time the alteration or increase will be completed by it: it may happen that there will be no alteration or increase at all, the case being the same as with the weight.
Book VIII
1
IT remains to consider the following question. Was there ever a becoming of motion before which it had no being, and is it perishing again so as to leave nothing in motion? Or are we to say that it never had any becoming and is not perishing, but always was and always will be? Is it in fact an immortal never-failing property of things that are, a sort of life as it were to all naturally constituted things?
Now the existence of motion is asserted by all who have anything to say about nature, because they all concern themselves with the construction of the world and study the question of becoming and perishing, which processes could not come about without the existence of motion. But those who say that there is an infinite number of worlds, some of which are in process of becoming while others are in process of perishing, assert that there is always motion (for these processes of becoming and perishing of the worlds necessarily involve motion), whereas those who hold that there is only one world, whether everlasting or not, make corresponding assumptions in regard to motion. If then it is possible that at any time nothing should be in motion, this must come about in one of two ways: either in the manner described by Anaxagoras, who says that all things were together and at rest for an infinite period of time, and that then Mind introduced motion and separated them; or in the manner described by Empedocles, according to whom the universe is alternately in motion and at rest-in motion, when Love is making the one out of many, or Strife is making many out of one, and at rest in the intermediate periods of time-his account being as follows:
'Since One hath learned to spring from Manifold, And One disjoined makes manifold arise, Thus they Become, nor stable is their life: But since their motion must alternate be, Thus have they ever Rest upon their round':
for we must suppose that he means by this that they alternate from the one motion to the other. We must consider, then, how this matter stands, for the discovery of the truth about it is of importance, not only for the study of nature, but also for the investigation of the First Principle. Let us take our start from what we have already laid down in our course on Physics. Motion, we say, is the fulfilment of the movable in so far as it is movable. Each kind of motion, therefore, necessarily involves the presence of the things that are capable of that motion. In fact, even apart from the definition of motion, every one would admit that in each kind of motion it is that which is capable of that motion that is in motion: thus it is that which is capable of alteration that is altered, and that which is capable of local change that is in locomotion: and so there must be something capable of being burned before there can be a process of being burned, and something capable of burning before there can be a process of burning. Moreover, these things also must either have a beginning before which they had no being, or they must be eternal. Now if there was a becoming of every movable thing, it follows that before the motion in question another change or motion must have taken place in which that which was capable of being moved or of causing motion had its becoming. To suppose, on the other hand, that these things were in being throughout all previous time without there being any motion appears unreasonable on a moment's thought, and still more unreasonable, we shall find, on further consideration. For if we are to say that, while there are on the one hand things that are movable, and on the other hand things that are motive, there is a time when there is a first movent and a first moved, and another time when there is no such thing but only something that is at rest, then this thing that is at rest must previously have been in process of change: for there must have been some cause of its rest, rest being the privation of motion. Therefore, before this first change there will be a previous change. For some things cause motion in only one way, while others can produce either of two contrary motions: thus fire causes heating but not cooling, whereas it would seem that knowledge may be directed to two contrary ends while remaining one and the same. Even in the former class, however, there seems to be something similar, for a cold thing in a sense causes heating by turning away and retiring, just as one possessed of knowledge voluntarily makes an error when he uses his knowledge in the reverse way. But at any rate all things that are capable respectively of affecting and being affected, or of causing motion and being moved, are capable of it not under all conditions, but only when they are in a particular condition and approach one another: so it is on the approach of one thing to another that the one causes motion and the other is moved, and when they are present under such conditions as rendered the one motive and the other movable. So if the motion was not always in process, it is clear that they must have been in a condition not such as to render them capable respectively of being moved and of causing motion, and one or other of them must have been in process of change: for in what is relative this is a necessary consequence: e.g. if one thing is double another when before it was not so, one or other of them, if not both, must have been in process of change. It follows then, that there will be a process of change previous to the first.
(Further, how can there be any 'before' and 'after' without the existence of time? Or how can there be any time without the existence of motion? If, then, time is the number of motion or itself a kind of motion, it follows that, if there is always time, motion must also be eternal. But so far as time is concerned we see that all with one exception are in agreement in saying that it is uncreated: in fact, it is just this that enables Democritus to show that all things cannot have had a becoming:
for time, he says, is uncreated. Plato alone asserts the creation of time, saying that it had a becoming together with the universe, the universe according to him having had a becoming. Now since time cannot exist and is unthinkable apart from the moment, and the moment a kind of middle-point, uniting as it does in itself both a beginning and an end, a beginning of future time and an end of past time, it follows that there must always be time: for the extremity of the last period of time that we take must be found in some moment, since time contains no point of contact for us except the moment. Therefore, since the moment is both a beginning and an end, there must always be time on both sides of it. But if this is true of time, it is evident that it must also be true of motion, time being a kind of affection of motion.)
The same reasoning will also serve to show the imperishability of motion: just as a becoming of motion would involve, as we saw, the existence of a process of change previous to the first, in the same way a perishing of motion would involve the existence of a process of change subsequent to the last: for when a thing ceases to be moved, it does not therefore at the same time cease to be movable-e.g. the cessation of the process of being burned does not involve the cessation of the capacity of being burned, since a thing may be capable of being burned without being in process of being burned-nor, when a thing ceases to be movent, does it therefore at the same time cease to a be motive. Again, the destructive agent will have to be destroyed, after what it destroys has been destroyed, and then that which has the capacity of destroying it will have to be destroyed afterwards, (so that there will be a process of change subsequent to the last,) for being destroyed also is a kind of change. If, then, view which we are criticizing involves these impossible consequences, it is clear that motion is eternal and cannot have existed at one time and not at another: in fact such a view can hardly be described as anythling else than fantastic.