Fixing the Sky

Home > Other > Fixing the Sky > Page 23
Fixing the Sky Page 23

by James Rodger Fleming

WEATHER WARRIORS

  Conflict over weather control [is] the likely cause of “the last war on earth.”

  —EDWARD TELLER, QUOTED IN CHRISTOPHER STONE, “THE ENVIRONMENT IN MORAL THOUGHT”

  IN an interview conducted in 2008, Colonel Don Berchoff, chief of U.S. Air Force Weather Resources and Programs, denied knowledge, interest, or involvement in techniques for controlling the weather: “I personally don’t believe weather modification is a good thing, and I don’t think the military believes in it.... The military does not conduct any kind of experimentation, that I understand, to control the environment to become more advantageous on the battlefield against our enemies.... We don’t do that.... As far as I know.”1 We might take this at face value, or we might assume that particular individuals, of whatever rank, however highly placed or seemingly well informed, simply have no knowledge of ongoing top-secret research projects.

  Just what do we know? We know that throughout history, weather has been a crucial factor in the outcome of wars and battles, and we know that the military has been a major patron in the development of weather science and services, providing logistical support and leadership for scientific field campaigns and running large-scale, even national, weather services. We know that the military has supplied important equipment for meteorological research, in some cases through new research-and-development projects in aviation, electronics, digital computing, and space and in other cases through dual-use or surplus hardware. We know that the emergence of modern meteorology is, in many ways, a product of two world wars and the cold war. We also know that in the Vietnam era, only a very few people knew about secret cloud seeding over the Ho Chi Minh Trail, originating as it did directly from the White House. This dynamic continues today. Geoscientists with high-level security clearances share associations, values, and interests with national security elites. Both groups agree on the necessity of preserving deniability in top-secret programs. We know with certainty that historically, weather and climate control have been portrayed as weapons that might be used against enemies without their knowledge—or the knowledge of lowerlevel operatives and the wider public.

  The military roots of meteorology can be traced from the deep past through the history of the cold war and Vietnam eras. In addition to traditional goals of being able to function and prevail under all environmental conditions, weather warriors have attempted to weaponize weather control. In the early cold war era, they were particularly active in experimentation on cloud seeding, in hurricane modification efforts such as Project Stormfury, and in rainmaking efforts in Vietnam. The United Nations Convention on the Prohibition of Military or Any Other Hostile Use of Environmental Modification Techniques (ENMOD), which entered into force in 1978, marks the end of this era and serves as a landmark treaty that may have to be revisited soon to avoid or at least try to mitigate possible military or hostile use of climate control or geoengineering. If, as has been recently asserted but not yet demonstrated, “[c]limate change has the power to unsettle boundaries and shake up geopolitics, usually for the worse,”2 it is certain that the governments of the world will have their strategic military planners working in secret on both worst-case scenarios and technological responses.

  Weather in Wars and Battles

  The weather has often been called the most violent variable in human affairs; that characterization could also apply to military affairs. Generals “mud” and “winter” and admiral “storm” have always had a big influence on the outcome of battles. Historians attribute the devastating defeat of the Roman general Varus and three of his legions in Germany in 9 C.E. to a combination of treachery, poor strategy, rough terrain, and bad weather; the kamikaze (divine winds), legendary protectors of Japan, destroyed Mongol emperor Kublai Khan’s invading force not once but twice, in 1274 and 1281; and British history teaches that favorable winds and gales contributed mightily to the defeat of the Spanish Armada in 1588.

  Military history is filled with weather lore. The Revolutionary Army’s successful retreat from Long Island in August 1776 was said to have been enabled by night fog and favorable tides; five months later, General George Washington crossed the Delaware River by boat in a driving snowstorm and surprised the Hessian troops in New Jersey; and the ambush of General Nicholas Herkimer’s volunteers in upstate New York in August 1777 was interrupted by the onset of a violent thunderstorm. Napoleon’s attack on Russia, like those of generals before and after him, was thwarted by winter weather, while his battle plan at Waterloo was interrupted by heavy rains. In World War I, it was all quiet on the western front during mud season. In World War II, the miracle at Dunkirk took place under the cover of heavy fog, the Japanese carrier fleet skirted Pacific storms to launch its attack on Pearl Harbor, and the outcome of the Battle of Midway hinged on the ability of American dive-bombers to shield their approach behind the clouds.3 The D-day invasion of Normandy in the unusually stormy month of June 1944 proceeded on the basis of the most critical set of forecasts in history.4 Of course, there are many more examples, with the winning side often considering a favorable outcome as an act of Providence.

  Science and the Military

  A mutually supportive relationship has long existed among science, engineering, and the military. According to engineering legend, long before the birth of modern science, Archimedes designed and built a series of machines to keep the Romans at bay during the siege of Syracuse. Leonardo da Vinci’s Renaissance drawings of war engines are also legendary. And in 1638, Galileo’s two new sciences were astronomy and the strength of materials as applied to military engineering.5

  In later centuries, scientists often “hitched a ride” with army and navy exploring expeditions; scientists utilized military scope, organization, and discipline to collect data during field campaigns; and military institutions forged their identities in part around scientific and engineering agendas, leadership, and training. As the prestige of scientists grew, linked as it was to their power over nature, whether actual or perceived, military planners took note and became major patrons. Scientists gained state funding, approbation, and political power through governmental channels with direct links to the military. The French Academy had long supported scientific research for national interests, and the Russian Academy, founded in 1724, served the interests of the tsars and, after 1917, the technical needs of the Communist Party. The National Academy of Sciences was established by President Abraham Lincoln in 1863 to “investigate, examine, experiment, and report upon any subject of science or art” whenever called on to do so by any department of the government. In the twentieth century, the task-oriented National Research Council coordinated scientific research during America’s brief involvement in World War I; and during World War II, the National Defense Research Committee, the Office of Scientific Research and Development, and the Manhattan Project demonstrated convincingly the absolute importance of promoting and supporting scientific research, development, testing, and evaluation of new weapons systems. In the cold war era, science became a prominent and permanent component of all modern militaries.6

  Links between science and the military—in perspectives, personnel, values, budgets, scale—have grown inexorably over the years. This “pursuit of power” in modern states, however, has come at a steep price. As was the case in Irving Langmuir’s pathological enthusiasm for weather control, and in many other instances of what has come to be called “big science,” the military can act as a distorting force in the ongoing development of natural and engineering knowledge, specifically by imposing secrecy on new discoveries in the name of national security and seeking to weaponize every new technique, no matter how new or speculative, such as James Van Allen’s discovery of the magnetosphere (chapter 7).7

  In the relationship between scientists and the military, it is safe to say that scientists seek support from the state and access to political power, while the state (especially the military) seeks power over nature as promised (and sometimes delivered) by scientists. Of course, transcending this dic
hotomy is the coproduction of the military-scientific-industrial state in which the various components are by no measure independent of one another. As geoscientists pursue knowledge of the Earth, they tend to focus their investigations on those areas in which technology and military interests have made resources readily available. In doing so, they go far beyond availing themselves of commercial, state, or military patronage; they actually contribute to the commodification, nationalization, and militarization of the natural world.8

  Meteorology and the Military

  During the War of 1812, U.S. Army Surgeon General James Tilton, motivated by prevailing environmental theories of disease that linked illness and epidemics to weather and climate, issued a general order directing all the medical personnel under his command to prepare quarterly reports as part of their official duties and to “keep a diary of the weather.”9 For the next six decades, the Army Medical Department continued its support for meteorology by observing, recording, and analyzing airs, waters, and places for the protection of the health of the troops. In the 1830s, the U.S. Navy also initiated a program to collect meteorological data at navy yards and aboard its ships. As discussed earlier, the army and navy supported James Espy’s storm studies in the 1840s and 1850s while simultaneously downplaying his weather control eccentricities. Not long after, Charles Le Maout and Generals Edward Powers and Daniel Ruggles developed their notions about cannonading leading to disturbed weather and enhanced rainfall.

  Between 1870 and 1891, the U.S. Army Signal Office administered the national weather service, providing daily weather reports and forecasts for the benefit of commerce and agriculture. Linked to Washington by military and commercial telegraph networks, the weather service served as a national surveillance force reporting to the government on a variety of threats to the domestic order, such as striking railroad workers, Indian uprisings on the frontier, locust outbreaks, and natural hazards to transportation, commerce, and agriculture.10 In World War I, meteorology took on new roles in warfare. Knowledge of lift, lob, and loft was needed for planes, shells, and poison gas, all of which rode the air currents. Meteorologists developed principles of battlefield climatology as they advised on how to launch and possibly survive poison gas attacks. In the newly minted field of aeronomy, or the study of conditions in the upper atmosphere, data collection from balloons, airships, and airplanes supported reconnaissance flights, the siting of aerodromes, and computations of the ballistic wind needed for long-distance artillery shelling. One proposal suggested using wind currents to carry balloons over enemy territory so that they might drop propaganda leaflets. As discussed earlier, with the rise of aviation, a desire to alter the weather, especially fogs, for the benefit of pilots got under way under military patronage.11

  During World War II, the U.S. Army Air Forces and the U.S. Navy trained approximately 8,000 weather officers, who were needed for bombing raids, naval task forces, and other special and routine operations worldwide. Personnel of the army’s Air Weather Service (AWS), an agency that was nonexistent in 1937, numbered 19,000 in 1945. Even after demobilization, the AWS averaged approximately 11,000 soldiers during the cold war and Vietnam eras. In 1954 a National Science Foundation (NSF) survey of 5,273 professional meteorologists in America revealed that 43 percent of them were still in uniform on active duty, 25 percent held Air Force Reserve commissions, and 12 percent were in the Navy Reserve. Thus almost a decade after World War II, 80 percent of American meteorologists still had military ties. Postwar meteorology also benefited from new tools such as radar, electronic computers, and satellites provided by or pioneered by the military.12

  The importance of weather to war and weather science to the military is reflected in the history of military interest in weather and climate control, a long-term relationship that deepened and intensified after World War II.

  Cold War Cloud Seeding

  Early in 1947, the new cloud-seeding techniques developed at the General Electric Corporation led to crash military programs in weather control research. Could there be a weather weapon that would release the violence of the atmosphere against an enemy, tame the winds in the service of an all-weather air force, or, on a larger scale, perhaps disrupt (or improve) the agricultural economy of nations and alter the global climate for strategic purposes? At the time, Langmuir was very interested in the idea of starting a “chain reaction” in clouds—using a tiny amount of a “nucleating” agent such as dry ice, silver iodide, or even water—that could release as much energy as an atomic bomb. If this technique could be weaponized and controlled, it could be used surreptitiously and without radioactive fallout; moreover, it would be unidirectional, in that clouds seeded upwind (for example, west of the Soviet Union) would be carried to their targets by the prevailing winds. This was an attractive idea for cold warriors, since the use of weather modification as a weapon could easily be denied and any damage could be blamed on natural causes. Given the military and economic implications of the technique and the powers it promised its masters, meteorologists advised the military to launch an “intensive research and development effort.”13

  Edward Teller—cold warrior extraordinaire, father of the H-bomb, and possibly the “real Dr. Strangelove”—recalled in his memoirs that Langmuir visited him at Los Alamos in the summer of 1947 and that he was “mostly interested in talking about cloud seeding; he talked so much about the amount of damage done by a storm his seeding had caused that I began to wonder whether he saw the technique as competition to the atomic bomb.”14 Although the timescales are different by many orders of magnitude, the total amount of energy released by a single thunderstorm is equal to that of a 20-kiloton atomic bomb. Moreover, a mature hurricane of moderate strength and size releases as much energy in a day as that of about four hundred 20-megaton hydrogen bombs. Such impressive numbers—despite the technical uncertainties involved in attempting to control storms—made Langmuir’s comparisons between weather modification and nuclear weapons very popular in military circles. Langmuir and his GE team had the security clearances needed to work on the Manhattan Project—but they had not participated. Metaphorically, a seeded thunderstorm became Langmuir’s A-bomb, and like his nuclear peers, he tested his techniques in the desert of New Mexico and bombed clouds with a B-29 aircraft, the sister of Enola Gay and Bockscar, the planes that had delivered atomic bombs on Hiroshima and Nagasaki. A seeded hurricane was, by analogy, Langmuir’s “Super” or H-bomb, and he yearned to take his techniques to the South Pacific for basin-scale tests near Bikini Atoll.15

  Langmuir talked openly to the press about the analogy. From a military perspective, he pointed out, cloud seeding could produce widespread drought and thus play havoc with an enemy’s food supply and hydropower plants, or trigger torrential downpours sufficient to cause flooding, immobilize troop movements, and put airfields out of commission. In 1950 he claimed that weather control “can be as powerful a war weapon as the atom bomb.”16 Invoking the famous letter written by Albert Einstein to President Franklin Roosevelt in 1939 describing the potential power of an atom-splitting weapon, Langmuir recommended that the government seize on the phenomenon of weather control as it did on atomic energy. GE research director C. Guy Suits reinforced the nuclear analogy in his Senate testimony of March 1951, pointing out the “many points of similarity between the release of atomic energy and the release of weather energy,”17 including the immense energies involved, the chain reaction mechanisms common to both, the trans-boundary problems and the need for international agreements, and similar national defense and economic implications. Suits also highlighted key differences—such as the early stage of weather modification research, its small-scale experimental needs, and its lack of top-secret processes—but he ended up “placing his bets” on Langmuir’s scientific judgment and argued that a central authority was needed, modeled after the Atomic Energy Commission.

  Weather control had tactical dimensions as well. In Washington, D.C., on August 28, 1947, Langmuir and Vincent Schaefer demonstrated cloud-
seeding techniques for the military’s top brass. Invited to the show were the chief of naval operations, Admiral Chester W. Nimitz; the commander in chief of the Army Air Forces, General Carl A. Spaatz; and the U.S. Army chief of staff, General Dwight D. Eisenhower. A total of sixteen generals, seven colonels, and two GE vice presidents attended the demonstration. Among them were the deputy chief of staff of the War Department, the chief of the Army Engineer Corps, the chief of the U.S. Army Signal Office, the head of War Department Intelligence, and the chief of research and development for the Air Corps. The Pentagon’s Joint Research and Development Board had the task of examining all the implications.18

  By October, GE was discussing plans to develop “bullets of compressed carbon dioxide or silver iodide. Shot from the nose of a plane, these fifty-caliber tracer bullets might cover a range of two miles in 30 seconds, change supercooled moisture in the path of the plane to ice crystals, and thus continuously dissipate an icing condition as the plane travels”—sort of shooting your way through the clouds.19 Remington Arms was the initial contractor, but the Army Ordnance Department soon took over the task.20 Schaefer sketched pseudo-military schemes to barrage the clouds with seeding agents, an array of armaments for battling the clouds that would have made General Robert Dyrenforth jealous (figure 6.1).

  6.1 “Possible Methods for Seeding Supercooled Clouds and Ground Fog with Ice Crystal Nuclei,” February 6, 1947: Vincent Schaefer’s military-inspired diagram for barraging the clouds. Techniques include delivery of seeding agents silver iodide (AgI), zinc oxide (ZnO), carbon dioxide (CO2), and gas using aircraft, rockets, smoke generators, projectiles, and captive balloons. (SCHAEFER PAPERS)

 

‹ Prev