Grantville Gazette, Volume 67

Home > Other > Grantville Gazette, Volume 67 > Page 17
Grantville Gazette, Volume 67 Page 17

by Bjorn Hasseler


  Due to the rebellious nature of the Hungarians and because of the tremendous fight they had had, the monarchy had the most developed policy in the world regarding the national minorities. In the nineteenth-century when North American natives were massacred and Welsh and Irish people were humiliated for their nationality, the minorities and ethnic groups of the Monarchy enjoyed a wide range of rights and independence that was envied by the Hungarian ethnic minoritiess that found themselves in Slovakia or in Romania after 1918.

  Hungary was driven against its will into the first World War in 1914, led by the Habsburgs. The consequences were somewhat worse than after the Defeat of Mohács back in 1526. Hungary lost seventy-four percent of its territory and millions of indigenous Hungarians became utterly oppressed minorities in the neighboring new states.

  Between the two world wars Hungary tried to reach a balance between the Germans and the Soviets and was able to get back some of the lost territories by playing Hitler against Stalin. Hungarian soldiers had to be sent to Russia and hundreds of thousands perished on the front. Meanwhile, toward the end of the war it offered the last asylum for Jewish people escaping the Germans. While Romania was able to leave its German allies, Hungary's secret peace negotiations were turned down by the Western powers. The Allied Forces were afraid that if Hungary jumped out of the war, Hitler would immediately invade the country and all the Jewish people would face great peril. Yet that's exactly what happened…the Governor of Hungary, Miklós Horthy, rebelled against the Germans and Hungary was invaded right away.

  Despite that, after the war ended with Hungary being thrown to the Soviets, the Soviets treated the Hungarians as the last henchmen of Hitler. The Hungarian anti-communist revolution of 1956 was the only armed uprising against the Soviets in Eastern Europe; Budapest put up a fierce resistance for two full weeks against the Red Army as they waited for the promised reinforcements from the west and from the United States. After the bloodshed, the Communists could not afford to apply such strict measures as before, and a milder form of socialism was introduced.

  Hungary was the first again in 1989 to open its borders to the west, and the first democratic elections were held here to crack communism. Now, the country is part of the European Union and a democracy, led by politicians whose fathers grew up under Communism.

  Knowing this sorry future history, Hungarians of the Ring of Fire time are likely to turn against the Habsburgs with all their might.

  ****

  Life at Sea in the Old and New Timelines, Part 3: Shipboard Lighting and Fire Prevention by Iver Cooper

  The enclosed decks of ships were man-made caves, and were it not for openings in the hull and decks, or artificial lights, they would have been as dark as night, even in the daytime. At night, of course, the sailors would be dependent on moonlight or even starlight if they didn't have artificial lights.

  Adequate lighting is essential to safety. In a Hungarian mine, the accident rate was 60 percent lower in a lighted section than in one where only cap lamps were used, and increasing the lighting level from 20 lux to 250 lux decreased the accident rate by 42 percent. (Lewis 3). Mine studies have also shown that productivity increases if lighting is improved (4).

  While the emphasis of this article is on shipboard lighting, much of what is said about light sources here (and in part 4) is equally useable by landlubbers.

  ****

  Natural Lighting

  Openings provided both natural light and ventilation. The problem was how to let light and air in and keep water (and projectiles) out. The openings could be vertical (on the sides of the ship hull or superstructure) or horizontal (on the deck or the top of a cabin).

  Gunports date back to the late fifteenth century. There was variation in the size and spacing of gunports, in part due to the variation in the caliber and crew requirements of the guns. On the British capital ship Sovereign of the Seas (1637), the ports were 38 inches square, with spacings 9.5-11 feet (Sephton, 69). Both circular and square gunports were employed (sometimes on the same ship, as in the case of the Vasa); in general, the square gunports were on the fully enclosed decks, and the round ones on the poop and forecastle.

  The first gunport lids were merely boards placed over the ports from the inside, and secured in some way. In the early sixteenth century, hinged lids were introduced. They were made of two pieces of wood, with the outer piece matching the curvature of the hull and the inner one the opening in the port frame (Mondfeld 176).

  Based on Georges Fournier's Hydrographie (1642), there were regional variations in lid design, with side-mounted lids on Spanish ships, top-mounted ones on French, British, and Dutch ones, and removable lids on ships from certain other countries.

  Further adjustability was provided by replacing the single lid with two half-lids, joined by a hook and an eye-bolt. In the late eighteenth century, the British added ventilation scuttles, holes with sliding metal covers. The British also experimented with inserting small glass windows into the gunport lids, but these proved unacceptably vulnerable to enemy fire (Quinn 83).

  During the eighteenth century, gunport lids on the gunports of the great cabin and the wardroom were replaced by sliding sash windows—these can be seen on the HMS Victory—not unlike those found in a modern home (Quinn 84). (However, few of us contemplate running cannon out through our windows, even if we don't like solicitations…) After the Napoleonic Wars, the guns were removed from officer's quarters, and the sash windows were replaced with "fixed lights," essentially windows that couldn't open.

  Stern lights were windows composed of small diamond-shaped panes of glass or muscovy mica set in lead or tin-plate, which in turn was tacked and sealed into a wood frame. They provided illumination for the "great cabin" and perhaps also the wardroom on a warship. Prior to 1690, mica was cheaper, so the use of glass was a prestige signifier (e.g., it was used on Henry VIII's Katherine Pleasaunce, 1519) (Quinn 85ff).

  The development of cast glass brought the price of large panes down (making possible the large mirrors at Versailles), but shipbuilders used smaller panes because of the stresses placed on the panes as the result of the flexing of the hull in response to wave action. If you doubled the length and width of a pane, you would want to double its thickness, too, so it wouldn't break. That would mean using eight times as much glass, but the cost would probably be more like nine or ten times as much because of the higher discard rate. The cost of stern lights was high enough so that a ship might have a combination of stern lights and mock lights (hull sections painted to look like stern lights during the day). For more on availability of glass and mica, see Cooper, "In Vitro Veritas: Glassmaking after the Ring of Fire" (Grantville Gazette 5) and 'The Sound of Mica" (Grantville Gazette 9).

  The stern lights might have a gutter and drain structure at the bottom to carry away spray, and be equipped with wooden covers ("dead lights") to keep out waves.

  Portals (Port-lights) were introduced in the nineteenth century, and were either fixed windows, or a pair of hinged doors, one glazed and the other solid. The first type were common on fishing schooners and the latter on the outboard cabins of passenger and merchant ships.

  Gratings over hatches provided light from above, but the structure had to be strong enough so the crew could walk over it. In the seventeenth century, the gratings were made out of wood. Notched slats fitted laterally into the hatch frame, and cross battens fitted longitudinally into the notches. The hatches had a raised border so that water on deck wouldn't run into the hold.

  There was an eighteenth-century dispute as to proper spacing; the Dutch and English favored four-inch square spaces to maximize lighting and ventilation, and the French preferred two-and-a-half-inch spaces so the gratings were easier to walk on. The French appear to have won this debate since in the nineteenth century the British reduced the spacing to three inches. (Quinn 89-90).

  Skylights, while known since ancient times, did not appear on ship decks until the early eighteenth century. Usually, these were not si
mple glazed windows but rather square or rectangular box structures, perhaps three to six feet in their longest dimension, and six to twelve inches high. Either the top or the sides of the box would be a glazed window. In some instances the window was hinged so that it could be opened to let in air, too.

  A light well was a cross between a grating and a skylight. It was a wooden box with windowed sides and a grating on top.

  Lenses were first installed in decks in the early nineteenth century (Quinn 95ff). I prefer to reserve the term for optical elements with a curved side for more efficiently collecting or distributing light.

  The first one was the Pellatt "Illuminator" (1807), known also as the "Patent-Light" or "Bull's Eye Light." Dana, in Two Years Before the Mast (1841), mentions that the forecastle (crew quarters) of the merchant vessel Alert is "tolerably well lighted by bull's eyes" in the daytime. The Pellatt lenses were used, not only as decklights, but also as portals and in gunports.

  In its original form, it was a lens with a hemispheric top and a flat bottom, five or six inches in diameter and one or two inches thick (centerline), placed in a wood frame (later, a brass or copper collar). Since the convex side was on top (and protruded above the deck), this was a collector lens. The frame could be hinged for ventilation purposes.

  By 1818, it was sometimes installed in an inverted configuration, i.e., flat side flush with the deck, and convex side down, arguably making it a "distributor" lens.

  However, this didn't seem to be considered a big advantage because "double flat" lens (I'd call them flush skylights) were sometimes installed (e.g., on the Confederate submarine Hunley.) A problem with a flush flat glass surface was that it was very slippery when wet, and some ships had textured or roughened deck lenses to improve traction.

  Prisms. There was less leakage if a deck fixture fit into a single plank. A square or rectangular lens of plank width transmitted more light than a circular lens of the same width. And rather than give them a curved surface, they could be faceted. The faceted side could face up or down, more often the latter.

  Mirrors. In theory, mirrors could be used to redirect light from a window to another part of the interior of the ship.

  ****

  Fuel-Burning Artificial Lighting (and Accessories)

  Prior to the discovery of electricity, artificial lighting was provided by burning some kind of combustible fuel. This of course meant that lighting came at a price: not just the cost of the fuel, but the risk of an uncontrolled fire. I will discuss fire prevention and control in a later section.

  There is some archaeological evidence of shipboard lighting devices from the early seventeenth century. They include candle sticks or holders on the armed merchant ship Sea Venture (1609), the treasure galleon Atocha (1622), the East Indiaman Campen (1627), the warship Wasa (1628), the East Indiaman Batavia (1629), and the galleon La Concepcion (1641), iron oil lamps on the Mayflower (1620), and brass gimbaled oil lamps with three wicks on the East Indiaman Witte Leeuw (1613) and the Batavia (Quinn 61).

  Candles provide the fuel in a solid form (Quinn 30-33). Tallow candles were made from animal fat; the process removed excess protein. Mutton drippings was the preferred source. Wax candles were made from beeswax or, later, from certain plant sources (bayberries, coconut palms, West African palms, and the Lisoea tree). Beeswax candles had a higher melting point, burned 15-20% brighter, and produced light as much as twice as long as tallow candles of the same size. Unfortunately, in the seventeenth century they cost three to four times as much.

  The Vergulde Draeck, a 260-ton, 28-gun jacht constructed in 1653 (Bander 218), carried 80 pounds of tallow candles, 80 pounds of wax candles, and 80 of a wax-tallow blend. It is estimated that it would have used 64-128 candles per month (and figure four to eight candles to the pound). (Quinn 66).

  By the mid-eighteenth century, there was an elite alternative: the spermaceti candle (Irwin). Spermaceti is a waxy substance found in the head of a whale, in an organ of uncertain function. (It is primarily cetyl palmitate, and Wikipedia/Spermaceti notes that "a botanical alternative to spemaceti is a derivative of jojoba oil." The jojoba is a shrub found in modern California, Arizona, Utah, and Baja California.) Spermacetei candles cost almost twice as much as beeswax candles, but burned 15% brighter. It was found to be advantageous to add a small amount of beeswax to the spermaceti to inhibit crystallization (Quinn 33).

  The obsolete luminous intensity unit candlepower was defined in 1860 as "the light produced by a pure spermaceti candle weighing 1∕6 pound (76 grams) and burning at a rate of 120 grains per hour (7.8 grams per hour)" (Wikipedia/Candlepower).

  In the nineteenth century, new manufacturing methods reduced costs. Water-cooled molds (1801) hardened the tallow faster, pistons (1823) could eject the finished candle faster than could be done manually, other machinery provided continuous wicking (1834), and a device could taper the candle base to eliminate the need for manual shaving (1861).

  New candle materials were also developed. In 1823, a method of producing stearin (stearic acid) was discovered by Chevreul and Gay-Lussac. (This stearin-making process is described in Faraday's classic The Chemical History of a Candle, and I am confident that a copy of that exists somewhere in Grantville.) They patented a composite candle, a mixture of stearin and tallow. This was inexpensive but burned like beeswax.

  Finally, in 1857, the first paraffin candles appeared. These were 20% brighter than spermaceti candles and cheaper to boot. Paraffin is a mixture of saturated hydrocarbons (alkanes) of 20 to 40 carbon atoms. They can be derived from petroleum, coal or oil shale.

  Paraffin has the disadvantage of a low melting point (115-154oF) but this can be improved by adding stearic acid (MP 157oF).

  From the point of view of the new timeline petroleum industry, which is trying to produce gasoline for propulsion, paraffins are a waste product. The industry would naturally like to sell them rather than just dump them, and it is only a matter of time before someone thinks of making candles from them. The same refining process that produces paraffin will also produce lubricating oils, which are higher molecular weight hydrocarbons.

  Since ancient times there have been two types of candle holders, the socket holder and the spike holder. Both were in use in the early seventeenth century (Quinn 34-5). Some sixteenth-century socket holders had a spring inside the socket, to push the candle up as it was consumed (Quinn 36).

  Oil-Lamps provide the fuel in liquid form. Sixteen oil lamps were found on the Uluburun shipwreck in Turkish waters, dated to 1316-18 BCE. We know that six were used by the crew, rather than were mere cargo, because they had blackened rims. Oil lamps have also been found on ancient Greek and Roman shipwrecks (Quinn 13).

  The oil in oil-lamps was usually vegetable (olive, linseed, radish, castor betty, sesame seed, or nut) oil; olive oil burnt bright and was nearly smokeless. Fish oil has been known as a fuel since ancient time but created "a poor light, large amounts of smoke, and a disagreeable smell" (Quinn 20).

  In the early seventeenth century, whale oil was considered the best fuel, with a single wick in such oil "burned with the brightness of two tallow candles and could last 12-15 hours without trimming" (Id.). However, it was very expensive.

  At the eve of the Ring of Fire, oil lamps would have had slanted wicks. The upright wick was introduced in the 1770s (Quinn 23).

  The Argand lamp was invented in 1780. It used a hollow, upright wick mounted inside a cylindrical glass chimney. The oil was supplied by a reservoir mounted above the burner since it couldn't travel far up the wick. The improved air flow increased brightness, and the more complete combustion meant that one didn't have to trim the wick as often. The brightness was equivalent to six to eight candles (Dempster 30). Post-RoF guidance may be found in EB/11 Lighting, 651-2.

  Unrefined coal oil was unsuitable for indoor illumination because it produced too much smoke (Wikipedia/Kerosene). However, kerosene, a mixture of alkanes of 6-12 carbons, could be distilled (150-275oC) from bituminous coal, oil-shale,
and petroleum. Kerosene, introduced in the 1850s, rapidly displaced whale oil as the preferred lamp oil.

  In one test, a "hurricane style" kerosene lamp (22mm wide wick) when clean provided 82 lumens (but 52 after 10 hours soot accumulation), and the maximum output in a particular direction was 9-10 candelas. A simple kerosene lamp provided only one tenth the light (Mills).

  A modern source states that "as a general rule, oil lamps will burn about 1/2 an ounce of lamp oil per hour." The oil was not specifically identified but based on a link, paraffin oil was contemplated (Bishop). Consistently, another one reports a half gallon (64 ounces) consumed in 154 hours (Mamabear). For olive oil, I find 2 ounces in 5 hours (Modernsurvivalblog). And for kerosene, "A kerosene lamp producing 37 lumens for 4 hours per day will consume about 3 litres of kerosene per month" (Wikipedia/Kerosene Lamp).

  A gimbaled lamp was pivotably attached by pins to the two ends of a U-shaped piece, the center of which was attached to a wall mount (Quinn 68, Fig. 20). While the device as described would pivot only on one axis (defined by the ends of the U) a second gimbal could be used to allow rotation around a second axis. Also, elements could be added to limit how far the lamp would swing.

  Wicks are fibrous, porous elements that deliver fuel to the flame of a candle or oil lamp. In either case, liquid fuel is drawn up into the wick by capillary action. (In the case of a candle, the heat of the flame liquefies the candle material.) "Too much fuel and the flame will flare and soot, too little fuel and it will sputter out." (NCA).

  Depending on the region and period, wicks were made of flax, wool, hemp, oakum, mullein, linen, castor plant, reed, papyrus, and even asbestos (the last is documented by Plutarch!) (Dilek 449; Quinn 18). In the seventeenth century, cotton was preferred.

 

‹ Prev