By the time Ptolemy had raised an army and stormed across Egypt and up into the Middle East, news was emerging that Laodice had arranged the murder of Berenice and her son. Infuriated, the pharaoh raged through the region in a campaign that left the whole area stunned. One inscription from Adulis in Eritrea proudly compares this to the magnificent Middle Eastern exploits of the great Rameses II. When Ptolemy returned to Egypt his baggage train was laden with spoils, enough to comfortably support even the most lavish basileus. So rich was he that he offered to pay for the rebuilding of the Colossus of Rhodes. The 160-foot-tall statue (including pedestal) of the god Helios had stood at or near the harbor entrance to the island since its dedication fifty-six years earlier in thanks for Ptolemy I’s assistance in the wars of Alexander’s successors. The statue—as high as the Statue of Liberty—had recently collapsed following an earthquake, but the Rhodians, fearful they had offended the god, refused the offer to rebuild. The statue then spent another eight hundred years lying broken on the shore, although even fallen it was still a major tourist attraction, Pliny the Elder noting that few people could manage to reach their arms around the thumb.
But Ptolemy did not need the Colossus. He had other, more important statues in his baggage train. The wagons that rolled back into Alexandria brought with them the two thousand statues of Egyptian gods that the hated Persian king Cambyses had removed from Egypt. For this the people loved him and gave him the title “Euergetes”—“the Benefactor.” With Ptolemy having this title and more money than he could spend, the rest of his reign was both peaceful and prosperous. Patronizing the greatest minds of his age was thus both pleasurable and affordable, and Alexandrians could turn their minds from war to contemplating far greater things.
During the war a legend emerged which perhaps hints at the growing importance of one particular new area of science in the city. After Ptolemy left for his campaign, his wife, a Cyrenian also called Berenice, went to the temple of Aphrodite to pray for her husband. Here she promised to sacrifice her famous long hair to the goddess if Ptolemy returned safely. When he did she duly honored the pledge and cut off her hair, having it placed in the temple. The next day the offering was found to be missing, leaving the king and queen furious. Only one man could calm them, an astronomer called Conon. He told the queen that the hair had not been stolen but that the gift had so pleased the gods that they had taken it up into heaven. That night he proved it to her, showing her a small group of stars which he called “Coma Berenices”—“Berenice’s Hair”—and the constellation retains that name to this day.
By this time another astronomer and mathematician, Aristarchus of Samos, who had arrived in the city as a young man sometime before 281 BC, was also enjoying Ptolemy and Berenice’s largesse. He had turned his extraordinary mind away from the earth to contemplate the heavens, not simply to interpret signs of the zodiac so beloved by the ever-nervous rulers of the ancient world, but to understand the mechanisms of the universe itself. What he would see in the heavens was far removed from the theological ideas of gods and creation prevalent in his day, far removed even from the concepts of the universe discussed in the museum. He had brought to Alexandria a unique heritage, and to look into his world is to look into the very dawn of science.
Aristarchus came from Samos, birthplace of perhaps the most famous philosopher, mathematician, and astronomer of all time—Pythagoras. Pythagoras, who lived from around 580 BC to about 500 BC, stands almost at the dawn of rational philosophy, that is, at the point where reasoning began to supplant faith as a means of understanding how the universe, and everything in it, works. But he had one predecessor, a man who many classical writers assert actually met and taught the young Pythagoras when he was about seventy years old. His name was Thales of Miletus, and he was known throughout the classical period as “the First of the Seven Sages of Ancient Greece.”
Before Thales, those seeking answers as to how or why things occurred in the universe invariably referred to the gods. Divine interventions caused earthquakes, changed the seasons, played with the lives and health of puny mortals, and so on ad infinitum. People had only a hazy idea of the shape of the earth and the surrounding cosmos. Many believed the earth was flat and round, floating boatlike on an all-encircling ocean. They then added to the disk of earth sitting in its ocean-saucer some form of pillars or supports (the Egyptians placed them at the cardinal points and anthropomorphized them as the arms and legs of the sky goddess Nut), holding up the dome of the heavenly firmament which sun, moon, and stars traversed in a regular manner. Outside this cosmic eggshell some placed water, which could descend from above in the form of rain and snow or well up from below in springs, lakes, and wells.
But what was all this actually composed of ? What was the fundamental matter? Before Thales, and for many after him, the answer to this question was invariably divinity. Call it soul, spirit, or god, the fundamental matter was divine, untouchable, metaphysical.
Thales, however, preferred water. Water is, after all, fundamental: It can be solid, liquid, or gaseous, and without it there can be no life. Right up until the nineteenth century AD scholars believed that life could generate itself spontaneously in water. As the early metallurgists had discovered, even metals could be reduced to liquids with sufficient heat. And with the seasonal inundations of the great rivers of the ancient world—the Nile, Tigris, and Euphrates—water created earth in revitalizing silt deposits and islands in the deltas of these great rivers.
But this is where Thales made his great leap. He asserted that earthquakes were the result of waves, disturbances in the water on which the earth floated, and not the acts of irate gods. This was one of the greatest revolutionary ideas of all time.
Of course today we know that earthquakes are not caused by ripples on a cosmic ocean, but it is Thales’ idea, not his conclusion, that matters. In attributing a natural phenomenon to mechanics and not gods, he took the universe out of the hands of divinities and claimed, extraordinarily, that everything was understandable, knowable. The furious sea god Poseidon was no longer shaking the planet as he strode across it. Something physical was making the world shake. This idea alone marks the beginnings of science.
Thales is credited by all the great masters—Plato and Aristotle among them—with being the founder of natural philosophy, Aristotle reporting simply that Thales considered that he had found the “originating principle.” “Thales says it is water,” he proclaimed.
Though his own writings are lost, stories about his life and thoughts were widely reported in classical times, particularly his musings on astronomy. Diogenes Laertius devotes his first book in The Lives and Opinions of Eminent Philosophers to Thales:
After having been immersed in state affairs he applied himself to speculations in natural philosophy, though, as some people state, he left no writing behind him. For the book on Naval Astronomy, which is attributed to him, is said in reality to be the work of Phocus the Samian. But Callimachus was aware that he was the discoverer of the Lesser Bear [Ursa Minor]; for in his Iambics he speaks of him thus:
And he, ’tis said, did first compute the stars
Which beam in Charles’ wain, and guide the bark
Of the Phoenician sailor o’er the sea.
Diogenes Laertius, The Lives and Opinions
of Eminent Philosophers, book 1
Diogenes goes on to report that other people claimed that Thales did write two books, one on the solstice and the other on the equinox, thinking that everything else would easily be explained. Both Herodotus and Xenophanes are said to have praised him for being the first person able to predict the eclipses and motions of the sun and to have really studied astronomy—a slightly dubious claim, as the Chaldean Babylonian astronomers were considerably further advanced than the Greeks in charting the movements of the celestial bodies. Diogenes also attributes to Thales numerous other advances, all of which flowed out of his realization that the universe was rational and could be understood. He tells us that Thales aff
irmed the path (known as the ecliptic) along which the sun appears to move during the day, calculated the size of the sun, and was even the first person to call the last day of each month the “thirtieth,” presumably implying that he devised a new calendar. He also considered more intangible things, and we are told that
some again (one of whom is Choerilus the poet) say that he was the first person who affirmed that the souls of men were immortal. . . . But Aristotle and Hippias say he attributed souls also to lifeless things, forming his conjecture from the nature of the magnet and of amber.
Diogenes Laertius, The Lives and Opinions
of Eminent Philosophers, book 1
It was Thales’ method rather than his results that had begun a revolution, and he believed that with that method he could understand everything. Plato even credits him with being the first absentminded professor in history. He tells us that the philosopher would wander at night, gazing up at the stars and not looking where he was going. On one occasion this led him to fall into a ditch, where a pretty young girl found him and teased him, saying “that he was so eager to know what was going on in heaven, that he could not see what was before his feet,” before wryly adding, “This is applicable to all philosophers” (Plato, Theaetetus, 174A).
The heir to Thales’ innovative view of the world was a man whose name stills strikes fear into the hearts of schoolchildren—Pythagoras. Like that of Thales, none of Pythagoras’s own work has survived. In fact, the cult which he led—half religious, half scientific—followed such a tight code of secrecy that it may well be that they forbade the writing of their secret formulas and discoveries. But even in his lifetime Pythagoras was such a towering figure that his biographical details were written down by others, and some of these accounts have survived.
Many busts of the great mathematician also survive, although none are contemporary, so they probably bear little relation to what he actually looked like. The only physical feature we do know about is a striking birthmark on his thigh. His father was a merchant from Tyre (in Syria) who was granted citizenship in Samos after he donated grain to the island in a time of famine. His mother was a native of Samos. Pythagoras grew up on the small island but also traveled extensively with his father, visiting Tyre, where he was taught by Chaldean magi from Babylonia, renowned for their knowledge of astronomy and astrology, and other learned Syrians. His educators also taught him to play the lyre and to recite Homer and other poetry.
It was on his travels, the sources tell us, that he encountered both Thales and his pupil Anaximander and attended the latter’s lectures on geometry and cosmology. It is also said that Thales advised the young man to travel to Egypt to study with the priests there, just as Thales himself had done fifty years previously.
Pythagoras took the old man’s advice. At that time Samos was allied to Egypt, which apparently gave Pythagoras access to the temples and their scholar-priests, who accepted him among them. There are so many close parallels between the society which Pythagoras later set up in Italy and the operation of the Egyptian priesthood that we can assume that it was in Egypt that he developed his ideas for his own school. This would explain his cult’s emphasis on secrecy, the striving for purity, and even the refusal to eat beans or wear any sort of animal skins, all of which were Egyptian priestly taboos.
Ten years after he arrived in Egypt, the country was invaded by Cambyses II, king of Persia, and Pythagoras was captured and sent to Babylon. There, we are told by the philosopher Iamblichus,
he gladly associated with the Magi . . . and was instructed in their sacred rites and learnt about a very mystical worship of the gods. He also reached the height of perfection in arithmetic and music and the other mathematical sciences taught by the Chaldeans.
Iamblichus, The Life of Pythagoras
Around 530 BC or earlier Pythagoras left Babylon and made his way back to Samos, where he founded his school, which he called the Semicircle. There all manner of philosophical issues were discussed, his pupils sitting in a semicircle around the master. But back at his birthplace Pythagoras was again drawn into the political and diplomatic life of his people, which greatly distracted him from his philosophical work. It is also said that the local people disliked his Egyptian style of symbolic teaching, and he used this as an excuse to move the school to the Greek city-state of Croton (now Crotone) in present-day southern Italy. Here he reestablished the school with an inner circle known as the Mathematikoi who lived in the school, had no possessions, were vegetarians, and lived according to the strict regime prescribed by the master.
The members of the Semicircle were required to live by a set of tenets which stated that
• At its deepest level reality is mathematical in nature.
• Philosophy can be used for spiritual purification.
• The soul can ascend to union with the divine.
• Certain symbols have special, mystical significance.
• All brothers and sisters of the order must observe strict loyalty and secrecy.
Following the strictures of the group, Pythagoreans were hence the first to devise a consistent cosmos, based on pure numbers. By associating a point with 1, a line with 2, a surface with 3, and a solid with 4, they arrived at the sacred and omnipotent total number of 10. They believed that 10 would also be the key to understanding the structure of the cosmos.
A new element in this cosmic glass-bead game of mathematics and astronomy which Pythagoras introduced was music. Noting that vibrating strings produce harmonious tones when the ratios of their lengths are whole numbers, he went on to arrange the universe into similarly harmonic groups of spheres, even claiming that the Music of the Spheres really existed, though we have lost the ability to hear this background noise. According to Pliny, Pythagoras thought the musical interval between the earth and the moon was a tone, the moon to Mercury a semitone, Venus to the sun a minor third, Mars to Jupiter a semitone, and so on, so that the heavenly bodies actually played tunes as they waltzed past each other.
The Pythagoreans’ universe was one of absolute mathematical perfection. All heavenly bodies were, for them, perfectly spherical and moved in perfectly spherical orbits. At the center of the universe Pythagoras placed the earth, then the moon, then the sun, and next the planets. The whole universe was finally wrapped in an outer sphere of the fixed stars.
Arthur Koestler catches the essence of the structure perfectly: “The Pythagorean world resembles a cosmic musical box playing the same Bach prelude from eternity to eternity” (Arthur Koestler, The Sleepwalkers, p. 33).
Having turned the universe from a whim of the gods into a mathematical machine, Pythagoras set the stage for the objective study of astronomy. It was a pupil of Pythagoras, named Philolaus, who would first suggest that the reason for the rising and setting of the sun, moon, and stars might not be that these celestial bodies moved across the sky but that the earth itself was spinning. Sadly, he went on to obscure this brilliant and counterintuitive revelation by inventing two new astral bodies apparently invisible to the human eye. First he had the earth spinning around the “cosmic hearth,” an invisible fire at the center of the universe. On the same sphere there was another invisible object, a counterearth responsible for generating certain eclipses. The next sphere was our earth, then the moon, the sun, the five known planets, and finally the sphere carrying all the fixed stars, bringing the total number of celestial spheres up to the desired mystical number ten. Pythagoras would have been proud of him, had it not been such a cumbersome and fanciful creation!
The idea of a rotating earth would only be taken up again some centuries later, in Plato’s lifetime, by an astronomer named Heraclitus, who first proposed that the earth rotated once each day on its own axis. This mortally offended Plato, who still insisted that while the earth remained perfectly still at the center of the universe, every other celestial body rotated dutifully round it, and us. But this troubled Heraclitus. He had observed how some of the planets, in particular Venus, do not move smoothly
through space as the perfect Pythagorean model insisted; rather, for some nights they advance, but then they stop and appear to go back on their own course for a few days. What, he asked, could make the planets wander so? It was a pressing problem, and one which even echoes into our language today, the word “planet” deriving from the Greek word for “wanderer.” For Heraclitus the solution was obvious: At least two of the planets, the so-called inner planets Venus and Mercury, must orbit around the sun, not the earth, and it was this complex movement that, viewed from the earth, seemed to make them wander. This astute model quickly caught on and became known as the “Egyptian System.” Its only flaw was that it didn’t go far enough—it still had the earth at the center of the universe, and the sun, now with its two “moons” of Venus and Mercury, obediently circling it.
This then was the confusing view of the universe that Aristarchus of Samos brought with him to Alexandria. But under her clear skies and aided by the new facilities of the museum’s observatory, that fog of confusion was about to lift, leading to one of the greatest scientific discoveries of all time.
Aristarchus had studied with Ptolemy II’s tutor, Strato of Lampsacus, a man whose devotion to the study of nature earned him the label “the Physicist.” Trained in Aristotle’s Lyceum in Athens, Strato took his master’s passion for the rational study of nature a step further by claiming that there was no need for any divine explanation of the universe. He declared that there was just nature, and that all things natural could be subjected to observation, measurement, and experimentation. In this respect he is considered the first atheist philosopher, but more important for our story, he essentially saw the universe as a mechanism which operated without the need for transcendental, divine forces. It was this idea that he impressed on the young Aristarchus, and which gave his pupil the confidence to ask a previously unasked question: If the universe is simply a machine, how does it work?
The Rise and Fall of Alexandria Page 13