Complete Novels of Maria Edgeworth

Home > Fiction > Complete Novels of Maria Edgeworth > Page 728
Complete Novels of Maria Edgeworth Page 728

by Maria Edgeworth


  Whatever repairs are carried on in a house, children should be permitted to see: whilst every body about them seems interested, they become attentive from sympathy; and whenever action accompanies instruction, it is sure to make an impression. If a lock is out of order, when it is taken off, show it to your pupil; point out some of its principal parts, and name them; then put it into the hands of a child, and let him manage it as he pleases. Locks are full of oil, and black with dust and iron; but if children have been taught habits of neatness, they may be clock-makers and white-smiths, without spoiling their clothes, or the furniture of a house. Upon every occasion of this sort, technical terms should be made familiar; they are of great use in the every-day business of life, and are peculiarly serviceable in giving orders to workmen, who, when they are spoken to in a language that they are used to, comprehend what is said to them, and work with alacrity.

  An early use of a rule and pencil, and easy access to prints of machines, of architecture, and of the implements of trades, are of obvious use in this part of education. The machines published by the Society of Arts in London; the prints in Desaguliers, Emerson, le Spectacle de la Nature, Machines approuvées par l’Académie, Chambers’s Dictionary, Berthoud sur l’Horlogerie, Dictionaire des Arts et des Métiers, may, in succession, be put into the hands of children. The most simple should be first selected, and the pupils should be accustomed to attend minutely to one print before another is given to them. A proper person should carefully point out and explain to them the first prints that they examine; they may afterwards be left to themselves.

  To understand prints of machines, a previous knowledge of what is meant by an elevation, a profile, a section, a perspective view, and a (vue d’oiseau) bird’s eye view, is necessary. To obtain distinct ideas of sections, a few models of common furniture, as chests of drawers, bellows, grates, &c. may be provided, and may be cut asunder in different directions. Children easily comprehend this part of drawing, and its uses, which may be pointed out in books of architecture; its application to the common business of life, is so various and immediate, as to fix it for ever in the memory; besides, the habit of abstraction, which is acquired by drawing the sections of complicated architecture or machinery, is highly advantageous to the mind. The parts which we wish to express, are concealed, and are suggested partly by the elevation or profile of the figure, and partly by the connection between the end proposed in the construction of the building, machine, &c. and the means which are adapted to effect it.

  A knowledge of perspective, is to be acquired by an operation of the mind directly opposite to what is necessary in delineating the sections of bodies; the mind must here be intent only upon the objects that are delineated upon the retina, exactly what we see; it must forget or suspend the knowledge which it has acquired from experience, and must see with the eye of childhood, no further than the surface. Every person, who is accustomed to drawing in perspective, sees external nature, when he pleases, merely as a picture: this habit contributes much to form a taste for the fine arts; it may, however, be carried to excess. There are improvers who prefer the most dreary ruin to an elegant and convenient mansion, and who prefer a blasted stump to the glorious foliage of the oak.

  Perspective is not, however, recommended merely as a means of improving the taste, but as it is useful in facilitating the knowledge of mechanics. When once children are familiarly acquainted with perspective, and with the representations of machines by elevations, sections, &c. prints will supply them with an extensive variety of information; and when they see real machines, their structure and uses will be easily comprehended. The noise, the seeming confusion, and the size of several machines, make it difficult to comprehend and combine their various parts, without much time, and repeated examination; the reduced size of prints lays the whole at once before the eye, and tends to facilitate not only comprehension, but contrivance. Whoever can delineate progressively as he invents, saves much labour, much time, and the hazard of confusion. Various contrivances have been employed to facilitate drawing in perspective, as may be seen in “Cabinet de Servier, Memoires of the French Academy, Philosophical Transactions, and lately in the Repertory of Arts.” The following is simple, cheap, and portable.

  PLATE 1. FIG. 1.

  A B C, three mahogany boards, two, four, and six inches long, and of the same breadth respectively, so as to double in the manner represented.

  PLATE 1. FIG. 2.

  The part A is screwed, or clamped to a table of a convenient height, and a sheet of paper, one edge of which is put under the piece A, will be held fast to the table.

  The index P is to be set (at pleasure) with it sharp point to any part of an object which the eye sees through E, the eye-piece.

  The machine is now to be doubled as in Fig. 2, taking care that the index be not disturbed; the point, which was before perpendicular, will then approach the paper horizontally, and the place to which it points on the paper, must be marked with a pencil. The machine must be again unfolded, and another point of the object is to be ascertained in the same manner as before; the space between these points may be then connected with a line; fresh points should then be taken, marked with a pencil, and connected with a line; and so on successively, until the whole object is delineated.

  Besides the common terms of art, the technical terms of science should, by degrees, be rendered familiar to our pupils. Amongst these the words Space and Time occur, as we have observed, the soonest, and are of the greatest importance. Without exact definitions, or abstract reasonings, a general notion of the use of these terms may be inculcated by employing them frequently in conversation, and by applying them to things and circumstances which occur without preparation, and about which children are interested, or occupied. “There is a great space left between the words in that printing.” The child understands, that space in this sentence means white paper between black letters. “You should leave a greater space between the flowers which you are planting” — he knows that you mean more ground. “There is a great space between that boat and the ship” — space of water. “I hope the hawk will not be able to catch that pigeon, there is a great space between them” — space of air. “The men who are pulling that sack of corn into the granary, have raised it through half the space between the door and the ground.” A child cannot be at any loss for the meaning of the word space in these or any other practical examples which may occur; but he should also be used to the word space as a technical expression, and then he will not be confused or stopped by a new term when employed in mechanics.

  The word time may be used in the same manner upon numberless occasions to express the duration of any movement which is performed by the force of men, or horses, wind, water, or any mechanical power.

  “Did the horses in the mill we saw yesterday, go as fast as the horses which are drawing the chaise?” “No, not as fast as the horses go at present on level ground; but they went as fast as the chaise-horses do when they go up hill, or as fast as horses draw a waggon.”

  “How many times do the sails of that wind-mill go round in a minute? Let us count; I will look at my watch; do you count how often the sails go round; wait until that broken arm is uppermost, and when you say now, I will begin to count the time; when a minute has past, I will tell you.”

  After a few trials, this experiment will become easy to a child of eight or nine years old; he may sometimes attend to the watch, and at other times count the turns of the sails; he may easily be made to apply this to a horse-mill, or to a water-mill, a corn-fan, or any machine that has a rotatory motion; he will be entertained with his new employment; he will compare the velocities of different machines; the meaning of this word will be easily added to his vocabulary.

  “Does that part of the arms of the wind-mill which is near the axle-tree, or centre, I mean that part which has no cloth or sail upon it, go as fast as the ends of the arms that are the farthest from the centre?”

  “No, not near so fast.”

  “But th
at part goes as often round in a minute as the rest of the sail.”

  “Yes, but it does not go as fast.”

  “How so?”

  “It does not go so far round.”

  “No, it does not. The extremities of the sails go through more space in the same time than the part near the centre.”

  By conversations like these, the technical meaning of the word velocity may be made quite familiar to a child much younger than what has been mentioned; he may not only comprehend that velocity means time and space considered together, but if he is sufficiently advanced in arithmetic, he may be readily taught how to express and compare in numbers velocities composed of certain portions of time and space. He will not inquire about the abstract meaning of the word space; he has seen space measured on paper, on timber, on the water, in the air, and he perceives distinctly that it is a term equally applicable to all distances that can exist between objects of any sort, or that he can see, feel, or imagine.

  Momentum, a less common word, the meaning of which is not quite so easy to convey to a child, may, by degrees, be explained to him: at every instant he feels the effect of momentum in his own motions, and in the motions of every thing that strikes against him; his feelings and experience require only proper terms to become the subject of his conversation. When he begins to inquire, it is the proper time to instruct him. For instance, a boy of ten years old, who had acquired the meaning of some other terms in science, this morning asked the meaning of the word momentum; he was desired to explain what he thought it meant.

  He answered, “Force.”

  “What do you mean by force?”

  “Effort.”

  “Of what?”

  “Of gravity.”

  “Do you mean that force by which a body is drawn down to the earth?”

  “No.”

  “Would a feather, if it were moving with the greatest conceivable swiftness or velocity, throw down a castle?”

  “No.”

  “Would a mountain torn up by the roots, as fabled in Milton, if it moved with the least conceivable velocity, throw down a castle?”

  “Yes, I think it would.”

  The difference between an uniform, and an uniformly accelerated motion, the measure of the velocity of falling bodies, the composition of motions communicated to the same body in different directions at the same time, and the cause of the curvilinear track of projectiles, seem, at first, intricate subjects, and above the capacity of boys of ten or twelve years old; but by short and well-timed lessons, they may be explained without confounding or fatiguing their attention. We tried another experiment whilst this chapter was writing, to determine whether we had asserted too much upon this subject. After a conversation between two boys upon the descent of bodies towards the earth, and upon the measure of the increasing velocity with which they fall, they were desired, with a view to ascertain whether they understood what was said, to invent a machine which should show the difference between an uniform and an accelerated velocity, and in particular to show, by occular demonstration, “that if one body moves in a given time through a given space, with an uniform motion, and if another body moves through the same space in the same time with an uniformly accelerated motion, the uniform motion of the one will be equal to half the accelerated motion of the other.” The eldest boy, H —— , thirteen years old, invented and executed the following machine for this purpose:

  Plate I, Fig. 3. b is a bracket 9 inches by 5, consisting of a back and two sides of hard wood: two inches from the back two slits are made in the sides of the bracket half an inch deep, and an eighth of an inch wide, to receive the two wire pivots of a roller; which roller is composed of a cylinder, three inches long and half an inch diameter; and a cone three inches long and one inch diameter in its largest part or base. The cylinder and cone are not separate, but are turned out of one piece; a string is fastened to the cone at its base a, with a bullet or any other small weight at the other end of it; and another string and weight are fastened to the cylinder at c; the pivot p of wire is bent into the form of a handle; if the handle is turned either way, the strings will be respectively wound up upon the cone and cylinder; their lengths should now be adjusted, so that when the string on the cone is wound up as far as the cone will permit, the two weights may be at an equal distance from the bottom of the bracket, which bottom we suppose to be parallel with the pivots; the bracket should now be fastened against a wall, at such a height as to let the weights lightly touch the floor when the strings are unwound: silk or bobbin is a proper kind of string for this purpose, as it is woven or plaited, and therefore is not liable to twist. When the strings are wound up to their greatest heights, if the handle be suddenly let go, both the weights will begin to fall at the same moment; but the weight 1, will descend at first but slowly, and will pass through but small space compared with the weight 2. As they descend further, No. 2 still continues to get before No. 1; but after some time, No. 1 begins to overtake No. 2, and at last they come to the ground together. If this machine is required to show exactly the space that a falling body would describe in given times, the cone and cylinder must have grooves cut spirally upon their circumference, to direct the string with precision. To describe these spiral lines, became a new subject of inquiry. The young mechanics were again eager to exert their powers of invention; the eldest invented a machine upon the same principle as that which is used by the best workmen for cutting clock fusees; and it is described in Berthoud. The youngest invented the engine delineated, Plate 1, Fig. 4.

  The roller or cone (or both together) which it is required to cut spirally, must be furnished with a handle, and a toothed wheel w, which turns a smaller wheel or pinion w. This pinion carries with it a screw s, which draws forward the puppet p, in which the graver of chisel g slides without shake. This graver has a point or edge shaped properly to form the spiral groove, with a shoulder to regulate the depth of the groove. The iron rod r, which is firmly fastened in the puppet, slides through mortices at mm, and guides the puppet in a straight line.

  Plate 1.

  The rest of the machine is intelligible from the drawing.

  A simple method of showing the nature of compound forces was thought of at the same time. An ivory ball was placed at the corner of a board sixteen inches broad, and two feet long; two other similar balls were let fall down inclined troughs against the first ball in different directions, but at the same time. One fell in a direction parallel to the length of the board; the other ball fell back in a direction parallel to its breadth. By raising the troughs, such a force was communicated to each of the falling balls, as was sufficient to drive the ball that was at rest to that side or end of the board which was opposite, or at right angles, to the line of its motion.

  When both balls were let fall together, they drove the ball that was at rest diagonally, so as to reach the opposite corner. If the same board were placed as an inclined plane, at an angle of five or six degrees, a ball placed at one of its uppermost corners, would fall with an accelerated motion in a direct line; but if another ball were made (by descending through an inclined trough) to strike the first ball at right angles to the line of its former descent, at the moment when it began to descend, it would not, as in the former experiment, move diagonally, but would describe a curve.

  The reason why it describes a curve, and why that curve is not circular, was easily understood. Children who are thus induced to invent machines or apparatus for explaining and demonstrating the laws of mechanism, not only fix indelibly those laws in their own minds, but enlarge their powers of invention, and preserve a certain originality of thought, which leads to new discoveries.

  We therefore strongly recommend it to teachers, to use as few precepts as possible in the rudiments of science, and to encourage their pupils to use their own understandings as they advance. In mechanism, a general view of the powers and uses of engines is all that need be taught; where more is necessary, such a foundation, with the assistance of good books, and the examinatio
n of good machinery, will perfect the knowledge of theory and facilitate practice.

  At first we should not encumber our pupils with accurate demonstration. The application of mathematics to mechanics is undoubtedly of the highest use, and has opened a source of ingenious and important inquiry. Archimedes, the greatest name amongst mechanic philosophers, scorned the mere practical application of his sublime discoveries, and at the moment when the most stupendous effects were producing by his engines, he was so deeply absorbed in abstract speculation as to be insensible to the fear of death. We do not mean, therefore, to undervalue either the application of strict demonstration to problems in mechanics, or the exhibition of the most accurate machinery in philosophical lectures; but we wish to point out a method of giving a general notion of the mechanical organs to our pupils, which shall be immediately obvious to their comprehension, and which may serve as a sure foundation for future improvement. We are told by a vulgar proverb, that though we believe what we see, we have yet a higher belief in what we feel. This adage is particularly applicable to mechanics. When a person perceives the effect of his own bodily exertions with different engines, and when he can compare in a rough manner their relative advantages, he is not disposed to reject their assistance, or expect more than is reasonable from their application. The young theorist in mechanics thinks he can produce a perpetual motion! When he has been accustomed to refer to the plain dictates of common sense and experience, on this, as well as on every other subject, he will not easily be led astray by visionary theories.

 

‹ Prev