by Alan Ereira
There was no first man, nor will there be a last: there always was and always will be a generation of man from man. Nothing happens by chance. The first cause [that is, God] could not make several worlds. God could not move the heavens [that is, the sky and therefore the world] with rectilinear motion; and the reason is that a vacuum would remain. God cannot be the cause of a new act [or thing] nor can he produce anything new. God cannot make more (than three) dimensions exist simultaneously.
These propositions would have made Darwin and Newton heretics, and quantum probability, the theory of continuous creation, ideas of multiple universes and dimensions would all have been heresies. The Bishop insisted that these possibilities must remain open because human reason cannot limit God’s omnipotence. By rejecting these propositions the bishop made it an offence to deny the possibility of evolution, quantum probability, Newtonian motion, the multiverse, continuous creation and multiple dimensions!
THEY THOUGHT THE EARTH WAS FLAT
It does look as though modern people are as likely as those of the Middle Ages to hold false certainties. One of the oddest of these is the widespread conviction that medieval people thought the earth was flat. This is a modern mistake – there was no such belief in the Middle Ages. Perhaps ‘mistake’ is too kind a word. It is a lie that has been elevated into a fact.
The lie was concocted by two writers at around the same time: a French antireligious academic, Antoine-Jean Letronne, in his On the Cosmographical Ideas of the Church Fathers (1834), and the American novelist, Washington Irving. Irving was the author of such reliable historical texts as ‘The Legend of Sleepy Hollow’ and ‘Rip Van Winkle’. In 1828 he wrote an equally reliable biography of Christopher Columbus. This includes a scene in which the great navigator, about to set off westwards to the Indies, is confronted by the Church authorities at Salamanca in Spain. They accuse our hero of heresy because he says the world is round. It’s a gripping scene and one that has held imaginations in thrall through the ensuing years.
The only snag is that Washington Irving simply made the whole thing up. The Church had never taught that the world was flat. It’s nonsense.
But it was a great idea with which to attack the Church, even if it wasn’t true. Ledronne was an anti-Christian polemicist and the Darwinists, when they were attacked by the Church authorities for saying that humans were descended from other animals, connected his falsehoods with Irving’s fantasy and called religious zealots ‘flat earthers’. Irving’s nonsense was repeated by a succession of lazy authors*3 and ended up in a number of well-respected histories of science, and in the New York Times editorial that ushered in the first day of the new millennium.
There is no doubt that intelligent people in the Middle Ages knew perfectly well that the earth was a globe. Aquinas, in the thirteenth century, wrote that, ‘the astronomer and the natural philosopher both demonstrate the same conclusion, such as that the world is round; yet the astronomer does so through mathematics, while the natural philosopher does so in a way that takes matter into account.’
Roger Bacon, living at the same time as Aquinas, had been taught that Greek mathematicians had measured the earth’s circumference. It was obvious that it was round – for how else did things disappear beyond the horizon? As he wrote: ‘The . . . curvature of the earth explains why we can see further from higher elevations.’
What is more, medieval scholars were actively considering the possible existence of America. They realized that the people of the world they knew inhabited only one hemisphere, and devoted a lot of discussion to what happened on the other side. Some said it was all water. But some postulated the existence of another land mass, the antipodes, ‘on the opposite side of the earth, where the sun rises when it sets to us’ (that is, in the far west). And whether or not these ‘antipodes’ were inhabited was a matter of intense speculation. The fifth-century theologian St Augustine had thought not, on the very rational grounds that all humans must be descended from a common ancestor and such lands, if they existed, were too far away to have been settled.
Columbus had no problem with the Church’s geography. He found the antipodes.
MAPPAE MUNDI
Surely, though, the maps of the Middle Ages demonstrate beyond doubt that medieval people had no idea of the shape, size, look, nature, plan, organization or concept of the earth as it really is?
The standard medieval image of the earth – described as a T-O map – was a circular disc divided by bodies of water in the shape of the letter T. The area above the T represents Asia; the lower left quadrant (separated from Asia by the Black Sea) represents Europe and the lower right (separated from Asia by the Red Sea) represents Africa. The upright of the T, separating Europe and Africa, is the Mediterranean, and Jerusalem is in the centre of the map.
Well, it’s reassuring to be able to laugh at the ignorance of our forebears, but the trouble is that laughter often betrays our own ignorance. It’s unlikely that anybody who looked at such a ‘map’ in the Middle Ages thought it portrayed a geographical representation of the earth. The T-O map is more like an acronym, an aid to help people remember the significant points of the then-known world: the three continents and the waters in between.
And what of the wonderful and elaborate mappae mundi – such as the one in Hereford cathedral – that show strange and idiotic distortions of the earth? They are so obviously the products of a map-maker with less of a clue than the average primary-school student of today that it’s hard to take them seriously. And it’s certainly true that if you tried to use one to get from London to Stuttgart you probably wouldn’t get as far as Noah’s Ark – which usually figures prominently in such maps, along with the Tower of Babel, the dog-headed people converted by Thomas Aquinas, people with heads in their chests and people who protected themselves from the sun by holding their single gigantic foot over their heads like a parasol.
But once again we’re mistaking the purpose of the beast. These were not maps. Mappa simply means ‘cloth’ and a mappa mundi is not a ‘map of the world’ but a ‘cloth of the world’. The fact that we have derived our word ‘map’ from these cloths is not the fault of the people of the Middle Ages. If there’s any blame to be apportioned it’s our fault for forgetting where the word comes from.
And a cloth of the world had an entirely different purpose from an atlas (a seventeenth-century idea). A mappa mundi is a depiction of the world as a place of experiences, of human history, of notions and knowledge. It’s more like an encyclopaedia. It’s certainly not – and was never intended to be – a chart to be followed by travellers.
More than likely, a mappa mundi would have been a conversation piece in a rich man’s house. A fashionable – and expensive – ornament to prompt after-dinner discussion. For journeys people needed not maps but travel itineraries, and that is what they had. The most famous of the English ones was drawn by Matthew Paris, a monk of St Albans, in the thirteenth century. It shows the roads of England, and towns and villages and the time it takes to walk between them. The word ‘journey’ comes from the walking times on itineraries of this kind; ‘journée’ referred to a day’s travel.
THE GREATEST EXPERIMENTS OF THE MIDDLE AGES
The medieval church was by no means opposed to the pursuit of knowledge. On the contrary, it was churchmen who were responsible for many of the discoveries of the age. And the fabulous cathedrals, churches and abbeys that were constructed throughout the Middle Ages were the result of technical experimentation on a monumental scale.
The style of religious building that immediately followed the Conquest was essentially connected with fortification: thick stone walls with small windows were surmounted by barrel vaults supported on sturdy pillars.
The architecture of fortification was a natural field for innovation and experiment. By the late thirteenth century Edward I was building castles in a revolutionary new form created by a European master-mason, James of St George. In place of the old design, in which everything helped to defend a m
assive core called the Keep, Edward was dominating Wales with castles of concentric rings of wall, each wall protected by covering fire from towers. The gloomy, thick-walled Keep had been, in effect, a prison for the castle’s master; Edward’s castles were not only stronger but had at their heart an open space where a King or his lieutenant could live in more palatial comfort. But Church architecture had gone off on a totally different tack.
The Church had found a new confidence and it wanted to demonstrate that confidence. In fact, it now wanted to dominate the landscape. Abbots and archbishops became interested in constructing buildings with high towers, that would celebrate rather than defend their power.
We are so familiar with these enduring constructions that it is easy to forget that at the time they were built architects were experimenting at the limits of their technology and beyond – and all too often they learnt what those limits were the hard way: Winchester cathedral’s tower collapsed in 1107, during the building work. At Gloucester Abbey, built in 1100, the southern tower of the west front fell over in 1170.
But these minor drawbacks did not create architectural conservatism. On the contrary, theology said that God is light, and the Church wanted to get away from the dark, introspective architecture of the past and let the light of God shine in on worshippers.
So, when the choir of Canterbury cathedral burned down in 1174, the monks decided to build something altogether more ambitious in place of the previous heavy, rough-hewn pillars, rounded arches and wooden ceiling. And they allowed a French architect, William of Sens, to talk them into an entirely new architecture – far taller and lighter, finely chiselled and with its pointed arches coming together in graceful vaults, soaring to the glory of God and the Church. Nothing like it had been seen in England before.
In fact, William had conned the monks into it. He won the contract against other bidders by saying he thought they had overestimated the amount of work that needed doing, and then ‘for some time concealed what he found necessary to be done, less the truth should kill them’. It has often been said that medieval cathedrals were built by anonymous communities of dedicated men. The truth is they were built by internationally famous architects like William, who took advantage of ambitious churchmen to put up hugely expensive monuments to their own genius.
The problem of preventing the sides of a building being pushed outwards by the weight of the stone roof was solved by propping them up. At Canterbury the props developed in the course of the work from solid, triangular buttresses into flying buttresses – a new invention that would be the mark of ‘Gothic’ architecture.
This was a wildly experimental architecture, as was the process of putting it up. William was five years into the project, and about to start installing the great vault, when the scaffolding collapsed and timber, stone and William fell 50 feet. He survived, and tried to carry on directing the work from his bed, but in the end he had to return to France. It was another William, an Englishman, who came up with the design of the flying buttresses.
But the odd setback wasn’t going to stop the Church. Encouraged by hugely ambitious architects, it launched an unprecedented building programme, covering Britain and France with innovative and untried designs.
The nave of Lincoln cathedral collapsed in 1185 and the central tower in 1237 (during a sermon, burying the congregation). The tower of St David’s Cathedral fell down in 1220, as did Ely cathedral tower in 1322 (and part of the west front in the next century).York cathedral tower collapsed in 1407, and the tower of Ripon cathedral in 1450.
But by then the attempt to build ever-higher vaults was well and truly over. The technology had finally been recognized as being too dangerous in 1284, when a great chunk of Beauvais cathedral crashed to the ground. It was still under construction. Its choir was already the tallest building in Europe; its main section, the nave, was never built at all. Beauvais cathedral still stands – just – a massive stone fantasy of layered buttresses, attached to the stump of the squat building it was meant to replace and kept up by immense, modern wooden struts that are testament to the glorious incompetence of its design.
ELMER THE FLYING MONK
The Middle Ages were actually a hotbed of experimentation; and some people were prepared to test their theories in practical and very dangerous ways, even trying out flying machines. At Malmesbury Abbey, in the eleventh century, a monk by the name of Elmer built himself wings and took off from the top of the tower. The wings took him a full 200 yards before he crash-landed, breaking both legs.
When he was in bed recovering he told his abbot he knew what had gone wrong: his flying machine needed a tail. The abbot forbade him to take the experiment any further, setting back the development of flight by 900 years. But even though Elmer was crippled for life he never lost his interest in the sky. The Bayeux tapestry shows Halley’s comet, which was seen in 1066 and was heralded as a portent of disaster for England. It was reputedly Elmer who spotted it in the sky and gloomily identified its meaning.
RICHARD OF WALLINGFORD’S CLOCK
Everywhere we look in the Middle Ages we find churchmen experimenting and testing, exploring new boundaries of knowledge. Of course, much of this wasn’t pure ‘blue skies’ research. Just like a lot of modern science there were often economic or political imperatives behind the pursuit of knowledge.
Take Richard of Wallingford, who became abbot of St Albans in 1327. He undertook one of the most ambitious engineering projects of his day for reasons that were more to do with the exercise of power than with pure research.
It was said that Richard had neglected theology as a student at Oxford, preferring to concentrate on mathematics and astronomy; but he was particularly interested in astrology. According to his fellow monks, he predicted by astrological means the old abbot’s death and his own election to the post. Richard was clearly attracted to science that had practical applications.
The abbey of St Albans had been built in the early twelfth century, and for many years dominated the commercial life of not just the town but also the surrounding district. In recent years, however, its grip had been allowed to slip. In 1323 some pillars in the south nave had collapsed, bringing down the roof and wall. To add to the monks’ woes, the townspeople and tenants had rebelled against the abbey, demanding a charter of rights with representation in Parliament and an end to being forced to have their grain ground (at what they considered exorbitant cost) in the abbey’s mills. The old abbot, Hugh was a sick man, and conceded the charter and gave up imposing the abbey’s monopoly on milling. As a result the abbey lost control of the town, and was broke.
Richard set about restoring its fortunes with a degree of ruthlessness. He confiscated the hand flour-mills the townsfolk were now using to grind their corn and had them set into the abbey floor. From then on they were once again forced to use the abbey’s mill and – of course – pay for the privilege. At one stroke Richard had made the abbey solvent. But instead of using the money to rebuild the collapsed nave, he decided he would make something that would dominate the commercial life of St Albans.
He decided to build a clock.
The Church had originally established what were called ‘canonical hours’. These marked the times for praying and there were only four such hours during daylight and four for the night. The intervals between the hours varied according to the season. In summer the daylight ones were long and the night-time ones were short, and vice versa in winter. This was time as physically experienced on earth.
Economic growth had brought pressure from merchants and employees for more accurate timekeeping. It appears that by the thirteenth century the intervals between canonical hours no longer varied according to the seasons – many monasteries had moved over to fixed lengths. One of the effects of this change was that None – the hour for prayers originally said at the ninth hour of the day (mid-afternoon) – was displaced to midday, giving the English language the word ‘noon’.
However, laypeople were beginning to use time as measured
by astronomers, who divided a day into 24 equal and unvarying hours. By the fourteenth century the Church found that its monopoly on time was being appropriated by townspeople who began to erect clocks on public buildings and in city squares. Control of timekeeping was passing from the Church to the merchant classes.
Richard intended to keep the Church in control – in St Albans anyway. And as he was more concerned with the life of the town than the life of the abbey, his clock used the lay system – not the canonical hours. It did not just give the time, but linked it into the whole of the cosmos; on the clock could be seen the phases of the moon and the times of eclipses.
The clock used the same geared mechanism as the much-hated abbey mill, showing that the mill was linked to the mechanisms of the heavens. By chiming every hour, instead of just for prayers, it took control of the working day of the town. From now on, it was the Church that would issue the time for town council meetings, for the opening and closing of markets, for the start and the end of each and every day of work.*4
Richard’s aim seems to have been to demonstrate the intellectual and technical superiority of the Church, and its scientific understanding, over mere commercial tradesmen. You could say his purpose was political. And yet he would doubtless have claimed it was religious. He was making God’s universe visible.
We assume that science and religion are poles apart. But for the philosophers of the Middle Ages ‘science’ would have no meaning unless it led to an understanding of God. This religious agenda applied to every branch of philosophy or learning. Even medicine.
WHAT WERE MEDIEVAL DOCTORS UP TO?
Today we expect but one thing from our doctors: to make us better. The medieval doctor was trying to do a lot more than that. He was taking care of the soul as well as the body. Unlike modern doctors he did not try to stop a patient dying at all costs . . . rather, if death seemed inevitable, he was duty-bound to try and help him or her die in the best possible way for their immortal soul.