Unlocking the Past

Home > Other > Unlocking the Past > Page 35
Unlocking the Past Page 35

by Martin Jones


  It remains to be seen how far biomolecular archaeology will reach beyond population dynamics and ecology; how much it can access the human experience in its totality. I simply close with one prediction. However deeply into new corners of humanity these methods manage to probe, however rich and surprising the novel findings from ever faster methods, various of our long departed cousins will remain curious to our perceptions. For all the detail we add to our descriptions of them, for all the precision we achieve in describing everything from the colour of their eyes to their propensity for poetry, they will somehow manage to remain as enigmatic as they did when they were first encountered, almost two centuries ago, in the Neanderthal Ravine. They will continue to make us think ever harder about who we are and our place in the world.

  references

  1 a different kind of past

  Ancient Biomolecules (1999) 2:2-3, Special Issue, The Ancient Biomolecules Initiative.

  Boyd, W. C. and Boyd, L. G. (1933) ‘Blood grouping by means of preserved muscle’, Science 78: 578.

  Bulleid, A. (1926) The Lake-villages of Somerset (2nd edition), London: Folk Press.

  Clarke, D. L. (1972) ‘A provisional model of an Iron Age society and its settlement System’, in D. L. Clarke (ed.), Models in Archaeology, London: Methuen, pp. 801-69.

  Coles, J. M. (1987) Meare Village East: The Excavations of A. Bulleid and H. St George Gray 1932-1956, Exeter: Somerset Levels Project.

  Coles, J. M. and Coles, B. (1986) Sweet Track to Glastonbury: The Somerset Levels in Prehistory, London: Thames and Hudson.

  Cunliffe, B. W. and Miles, D. (eds) (1984) Aspects of the Iron Age in Central Southern Britain, Oxford University: Committee for Archaeology.

  Eglinton, G. and Curry, G. B. (eds) (1991) Molecules through Time: Fossil Molecules and Biochemical Systematics, London: Royal Society.

  Evans, J. and Hill, H. E. (1982) ‘Dietetic information by chemical analysis of Danish Neolithic pot sherds: a progress report’, in A. Aspinall and S. E. Warren (eds), Proceedings of the 22nd Symposium on Archaeometry, University of Bradford, pp. 224-8.

  Gould, S. J. (1989) Wonderful Life: The Burgess Shale and the Nature of History, London: Penguin.

  Higuchi, R. G. et al. (1984) ‘DNA sequences from the quagga, an extinct member of the horse family’, Nature 312: 282-4.

  Higuchi, R. G. et al. (1987) ‘Mitochondrial DNA of the extinct quagga: relatedness and extent of post-mortem change’, Journal of Molecular Evolution 25: 283-7.

  Rottlander, R. C. A. and Schlichterle, H. (1979) ‘Food identification of samples from archaeological sites’, Archaeophysika 10: 260-7.

  Turner, R. C. and Scaife, R. G. (1995) Bog Bodies: New Discoveries and New Perspectives, London: British Museum Press.

  Wang, G. H. and Lu, C. L. (1981) ‘Isolation and identification of nucleic acids of the liver from a corpse from the Changssha Han tomb’, Shen Wu Hua Hsueh Yu Sheng Wu Li Chin Chan 17: 70-5.

  2 the quest for ancient DNA

  Aldhous, P. (1996) ‘Dinosaur DNA fails new test of time’, New Scientist 150 (2030): 21.

  Allard, M. W., Young, D. and Huyen, Y. (1995) ‘Detecting Dinosaur DNA’, Science 268: 1192.

  Austin, J. J. et al. (1997) ‘Problems of reproducibility–does geologically ancient DNA survive in amber-preserved insects?’ Proceedings of the Royal Society of London, Series B, 264: 467-74.

  Austin, J. J. et al. (1998) ‘Ancient DNA from amber inclusions: a review of the evidence’, Ancient Biomolecules 2 (2): 167-76.

  Bada, J. L. et al. (1:994) ‘Amino acid racemization in amber-entombed insects: implications for DNA preservation’, Geochimica et Cosmochimica Acta 58 (14): 3131-5.

  Brown, T. A. and Brown, K. A. (1992) ‘Ancient DNA and the archaeologist’, Antiquity 66: 10-23.

  Brown, T. A. et al. (1993) ‘Biomolecular archaeology of wheat: past, present and future’, World Archaeology 25: 64-73.

  Brown, T. A. et al. (1994) ‘DNA in wheat seeds from European archaeological sites’, Experientia 50 (6): 571-5.

  Cano, R. J., Poinar, H. and Poinar, G. (1992) ‘Isolation and partial characterisation of DNA from the bee Propleheia dominicana (Apidae: Hymenoptera) in 25-40-million-year-old amber’, Medical Science Research 20: 249-51.

  Cano, R. J. et al. (1992) ‘Enzymatic amplification and nucleotide sequencing of portions of the 18s rRNA gene of the bee Propleheia dominicana (Apidae: Hymenoptera) isolated from 25-40-million-year-old Dominican amber’, Medical Science Research 20: 619-22.

  Cano, R. J. et al. (1993) ‘Amplification and sequencing of DNA from a 120–135-million-year-old weevil’, Nature 363: 536-8.

  DeSalle, R., Barcia, M. and Wray, C. (1993) ‘PCR jumping in clones of 30-million-year-old DNA fragments from amber-preserved termites (Mastotermes electrodom-inicus)’, Experientia 49: 906-9.

  Desalle, R. et al. (1992) ‘DNA sequences from a fossil termite in Oligo-Miocene amber and their phylogenetic implications’, Science 257: 1933-6.

  Doran, G. H. et al. (1986) ‘Anatomical, cellular and molecular analysis of 8,000-yr-old human brain tissue from the Windover archaeological site’, Nature 323: 803–6.

  Golenberg, E. M. (1991) ‘Amplification and analysis of Miocene plant fossil DNA’, Philosophical Transactions of the Royal Society of London, Series B, 333: 419–27.

  — (1994) ‘DNA from plant compression fossils. Ancient DNA’, in B. Herrmann and S. Hummel (eds), Ancient DNA. Recovery and Analysis of Genetic Material from Palaeontological, Archaeological, Museum, Medical and Forensic Specimens, New York: Springer-Verlag, pp. 237-56.

  Golenberg, E. M. et al. (1990) ‘Chloroplast DNA sequence from a Miocene Magnoliaspecies’, Nature 344: 656-8.

  Hagelberg, E. and Clegg, J. B. (1991) ‘Isolation and characterization of DNA from archaeological bone’, Proceedings of the Royal Society of London, Series B, 244: 45-50.

  Hagelberg, E., Sykes, B. C. and Hedges, R. E. M. (1989) ‘Ancient bone DNA amplified’, Nature 342: 485.

  Hedges, R. E. M. and Sykes, B. C. (1991) ‘Biomolecular archaeology: past, present and future’, in M. Polland (ed.), New Developments in Archaeological Science, London: Oxford University Press, pp. 267-83.

  Hedges, S. B. and Schweitzer, M. H. (1995) ‘Detecting dinosaur DNA’, Science 268: 1191-2.

  Higuchi, R. G. and Wilson, A. C. (1984) ‘Recovery of DNA from extinct species’, Federation Proceedings. (Federation of American Societies for Experimental Biology) 43: 1557.

  Higuchi, R. G. et al. (1984) ‘DNA sequences from the quagga, an extinct member of the horse family’, Nature 312: 282-4.

  Higuchi, R. G. et al. (1987) ‘Mitochondrial DNA of the extinct quagga: Relatedness and extent of post-mortem change’, Journal of Molecular Evolution 25: 283-7.

  Lindahl, T. (1993) ‘Instability and decay of the primary structure of DNA’, Nature 362: 709-15.

  — (1993) ‘Recovery of antediluvian DNA’. Nature 365: 700.

  — (1995) ‘Recognition and processing of damaged DNA’, Journal of Cell Science 49: 73-7

  — (1997) ‘Facts and artifacts of ancient DNA’, Cell 90: 1-3.

  Logan, G. A., Boon, J. J. and Eglinton, G. (1993) ‘Structural biopolymer preservationin Miocene leaf fossils from the Clarkia site, northern Idaho’, Proceedings of the National Academy of Science USA 90: 2246-50.

  Mullis, K. B. and Faloona, F. A. (1987) ‘Specific synthesis of DNA in vitro via apolymerase catalysed chain reaction’, Methods in Enzymology 155: 335-50.

  Pääbo, S. (1985) ‘Molecular cloning of ancient Egyptian mummy DNA’, Nature 314: 644-5.

  — (1985) ‘Preservation of DNA in ancient Egyptian mummies’, Journal of Archaeological Science 12: 411-17.

  — (1987) ‘Molecular genetic methods in archaeology: a prospect’, Anthropologischer Anzeiger 45: 9-17.

  — (1989) ‘Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification’, Proceedings of the National Academy of Science USA 86: 1939-43.

  Pääbo, S. and Wilson, A. C. (1988) ‘Po
lymerase chain reaction reveals cloning artefacts’, Nature 334: 387-8.

  — and — (1991) ‘Miocene DNA sequences–a dream come true?’ Molecular Evolution 1 (1): 45-6.

  Pääbo, S., Gifford, J. A. and Wilson, A. C. (1988) ‘Mitochondrial DNA sequences from a 7000-year old brain’, Nucleic Acids Research 16 (20): 9775-83.

  Pääbo, S., Higuchi, R. and Wilson, A. C. (1989) ‘Ancient DNA and the polymerase chain reaction’, Journal of Biological Chemistry 264 (17): 9709-12.

  Poinar, G. O. (1994) ‘The range of life in amber: significance and implications in DNA studies’, Experientia 50 (6): 536-42.

  Poinar, G. O. and Hess, R. (1982) ‘Ultrastructure of 40-million-year-old insect tissue’, Science 215: 1241-2.

  Poinar, G. O., Poinar, H. N. and Cano, R. J. (1994) ‘DNA from amber inclusions’, in B. Herrmann and S. Hummel (eds), Ancient DNA. Recovery and Analysis of Genetic Material from Palaeontological, Archaeological, Museum, Medical and Forensic Specimens, New York: Springer-Verlag, pp. 92-103.

  Poinar, H. N. and Stankiewicz, B. A. (1999) ‘Protein preservation and DNA retrieval from ancient tissues’, Proceedings of the National Academy of Science USA 96: 8426-31.

  Poinar, H. N., Cano, R. J. and Poinar, G. O. (1993) ‘DNA from an extinct plant’, Nature 363: 677.

  Poinar, H. N. et al. (1996) ‘Amino acid racemization and the preservation of ancient DNA’, Science 272: 864-6.

  Sidow, A., Wilson, A. C. and Pääbo, S. (1991) ‘Bacterial DNA in Clarkia fossils’, Philosophical Transactions of the Royal Society of London, Series B, 333: 429-33.

  Soltis, S., Soltis, D. E. and Smiley, C. J. (1992) ‘An rbcL sequence from a Miocene Taxodium (bald cypress)’, Proceedings of the National Academy of Science USA 89: 449-51.

  Tuross, N. (1994) ‘The biochemistry of ancient DNA in bone’, Experientia 50: 530-5.

  Wang, G. H. and Lu, C. L. (1981) ‘Isolation and identification of nucleic acids of the liver from a corpse from the Changssha Han tomb’, Shen Wu Hua Hsueh Yu Sheng Wu Li Chin Chan 17: 70-5.

  Watson, J. D. and Crick, F. C. (1953) ‘Molecular structure of nucleic acids: a structure for deoxyribose nucleic acids’, Nature 171: 737-8.

  Woodward, S. R., Weyand, N. J. and Bunnell, M. (1994) ‘DNA sequence from Cretaceous Period bone fragments’, Science 266: 1229-32.

  3 our curious cousins

  Anderson, S. et al. (1981) ‘Sequence organization of the human mitochondrial genome’, Nature 290: 457-64.

  Cann, R. L. (1992) ‘The search for Eve’, Science 256: 79.

  Cann, R. L., Stoneking, M. and Wilson, A. C. (1987) ‘Mitochondrial DNA and human evolution’, Nature 325: 31-6.

  Cooper, A. et al. (1997) ‘Neandertal genetics’, Science 277: 1021-4.

  Darwin, C. R. (1859) The Origin of Species by Means of Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, London: John Murray.

  Horai, S. (1995) ‘Evolution and the origins of man: clues from complete sequences of hominoid mitochondrial DNA’, Southeast Asian Journal of Tropical Medicine and Public Health 26 (suppl. 1): 146-54.

  Horai, S. et al. (1995) ‘Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNA’, Proceedings of the National Academy of Science USA 92: 532-6.

  Huxley, T. H. (1863) Man’s Place in Nature, London: Williams and Norgate.

  King, W. (1864) ‘The reputed fossil man of Neandertal’, Quarterly Journal of Science I: 88-97.

  Krings, M. et al. (1997) ‘Neandertal DNA sequences and the origin of modern humans’, Cell 90: 19-30.

  Krings, M. et al. (1999) ‘DNA sequence of the mitochondrial hypervariable region II from the Neandertal type specimen’, Proceedings of the National Academy of Science USA 96: 5581-5.

  Krings, M. et al. (2000) ‘A view of Neandertal genetic diversity’, Nature Genetics 26: 144-6.

  Ovchinnikov, I. V. et al. (2000) ‘Molecular analysis of Neanderthal DNA from the northern Caucasus’, Nature 404: 490-3.

  Sarich, V. M. and Wilson, A. C. (1967) ‘Immunological time scale for hominid evolution’, Science 158: 1200-03.

  Stringer, C. B. (1990) ‘The emergence of modern humans’, Scientific American 263 (6): 98-104.

  Stringer, C. B. and Andrews, P. (1988) ‘Genetic and fossil evidence for the origin of modern humans’, Science 239: 1263-8.

  Stringer, C. B. and McKie, R. (1996) African Exodus: The Origins of Modern Humans, London: Jonathan Cape.

  Tattersall, I. and Schwartz, J. H. (1999) ‘Hominids and hybrids: the place of Neanderthals in human evolution’, Proceedings of the National Academy of Science USA 96: 7117-19.

  Thorne, A. and Wolpoff, M. (1991) ‘Conflict over modern human origins’, Search 22: 175-7.

  — and — (1992) ‘The multiregional evolution of humans’, Scientific American (April): 28-33.

  Wolpoff, M. and Thome, A. (1991) ‘The case against Eve’, New Scientist 130: 37-41.

  Wolpoff, M. H., Wu, X. and Thome, A. (1984) ‘Modern Homo sapiens origins: a general theory of hominid evolution involving the fossil evidence from East Asia’, in F. Smith and F. Spencer (eds), The Origins of Modern Humans: A World Survey of the Fossil Evidence, New York: Alan Liss, pp. 411-83.

  Zuckerkandl, E. and Pauling, L. (1965) ‘Evolutionary divergence and convergence in proteins’, in V. Br yson and H. J. Vogel (eds), Evolving Genes and Proteins, New York: Academic Press, pp. 97-166.

  4 final traces of life

  Allison, A. (1988) ‘The role of anoxia in the decay and mineralization of protein-aceous macro-fossils’, Paleobiology 14: 139-54.

  Arriaza, B. T. (1995) The Chinchorro Mummies of Ancient Chile, Washington: Smithsonian.

  Bahn, G. (ed.) (1996) Tombs, Graves and Mummies, London: Weidenfeld and Nicolson.

  Briggs, D. E. G. (1999) ‘Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis’, Philosophical Transactions of the Royal Society of London, Series B, 354: 7-17.

  Briggs, D. E. G., Evershed, R. and Stankiewicz, B. A. (1999) ‘The molecular preservation of fossil arthropod cuticles’, Ancient Biomolecules 2(2): 135-46.

  Cockburn, A. and Cockburn, C. (eds) (1980) Mummies, Disease, and Ancient Cultures, Cambridge: Cambridge University Press.

  Coles, J. M. (1984) The Archaeology of Wetlands, Edinburgh: Edinburgh University Press.

  Collins, M. J., Waite, E. R. and Van Duin, A. C. T. (1999) ‘Predicting protein decomposition: the case of aspartic-acid racemization kinetics’, Philosophical Transactions of the Royal Society of London, Series B, 354: 51-64.

  Collinson, M. E. et al. (1999) ‘The preservation of plant cuticle in the fossil record: a chemical and microscopical investigation’, Ancient Biomolecules 2(2): 251-65.

  Eglinton, G. and Logan, G. A. (1991) ‘Molecular preservation’, Philosophical Transactions of the Royal Society of London, Series B, 333: 315-28.

  Gay, S. and Miller, E. J. (1978) Collagen in the Physiology and Pathology of Connective Tissue, New York: Fisher.

  Gemmel, R. T., McGerity, T. J. and Grant, W. D. (1999) ‘Use of molecular techniques to investigate possible long-term dormancy of halobacteria in ancient halite deposits’, Ancient Biomolecules 2(2): 125-33.

  Hansen, J. P. H. (1991) The Greenland Mummies, London: British Museum Publications.

  Painter, T. J. (1991) ‘Lindow Man, Tollund Man and other peat-bog bodies: the preservative and antimicrobial action of sphagnan, a reactive glycuronoglycan with tanning and sequestering properties’, Carbohydrate Polymers 15: 123-42.

  Parkes, R. J. et al. (1997) ‘A deep bacterial biosphere in Pacific Ocean sediments’, Nature 371: 410-13.

  Price, T. D. (ed.) (1989) The Chemistry of Prehistoric Human Bone, Cambridge: Cambridge University Press.

  Reynolds, T. M. (1965) ‘Chemistry of non-enzymic browning. II’, Advances in Food Research 14: 167-283.

  Turner, R. C. and Scaife, R. G. (1995) Bog Bodies: New Discoveries and New Perspectives, London: British Museum Press.


  Uhle, M. (1917) ‘Los aborigenes de Arica’, Publicaciones del Museo de Etnologia y Antropologia de Chile, Santiago, Chile 1 (4-5): 151-76.

  5 gaining control

  Allaby, R. G., Banerjee, M. and Brown, T. A. (1999) ‘Evolution of the high-molecular-weight glutenin loci of the A, B, D and G genomes of wheat’, Genome 42: 296–307.

  Allaby, R. G., Jones, M. K. and Brown, T. A. (1994) ‘DNA in charred wheat grains from the Iron Age hillfort at Danebury, England’, Antiquity 68 (258): 126-32.

  Allaby, R. G. et al. (1997) ‘Evidence for the survival of ancient DNA in charred wheat seeds from European archaeological sites’, Ancient Biomolecules 1 (2): 119-29.

  Barker, G. (1985) Prehistoric Farming in Europe, Cambridge: Cambridge University Press.

  Bar-Yosef, O. and Belfer-Cohen, A. (1989) ‘The origins of sedentism and farming communities in the Levant’, Journal of World Prehistory 3: 477-98.

  Bar-Yosef, O. and Gopher, A. (eds) (1997) ‘An early Neolithic village in the Jordan Valley I. The archaeology of Netiv Hagdud’, American School of Prehistoric Research Bulletin 43, Cambridge: Peabody Museum of Archaeology and Ethnology, pp. 247-66.

  Braidwood, L. et al. (eds) (1983) Prehistoric Archaeology along the Zagros Flanks, Chicago: University of Chicago Oriental Institute Publications V105.

  Brown, T. A. (1999) ‘How ancient DNA may help in understanding the origin and spread of agriculture’, Philosophical Transactions of the Royal Society of London, Series B, 354: 89-98.

  Brown, T. A. and Brown, K. A. (1992) ‘Ancient DNA and the archaeologist’, Antiquity 66 (250): 10-23.

  Brown, T. A. et al. (1993) ‘Biomolecular archaeology of wheat: past, present and future’, World Archaeology 25: 64-73.

  Brown, T. A. et al. (1994) ‘DNA in wheat seeds from European archaeological sites’, Experientia 50 (6): 571-5.

  Brown, T. A. et al. (1999) ‘Ancient DNA in charred wheats: taxonomic identification of mixed and single grains’, Ancient Biomolecules 2: 185-93.

  Chen, W. B. (1993) ‘Indica-Japonica differentiation and its relevance to the domestication process in rice: bioarchaeological and molecular genetic studies’, Doctoral dissertation, Gifu University, Gifu, Japan.

 

‹ Prev