The Bodily Structure of Man.—It is notorious that man is constructed on the same general type or model with other mammals. All the bones in his skeleton can be compared with corresponding bones in a monkey, bat, or seal. So it is with his muscles, nerves, blood-vessels and internal viscera. The brain, the most important of all the organs, follows the same law, as shewn by Huxley and other anatomists. Bischoff,3 who is a hostile witness, admits that every chief fissure and fold 11in the brain of man has its analogy in that of the orang; but he adds that at no period of development do their brains perfectly agree; nor could this be expected, for otherwise their mental powers would have been the same. Vulpian4 remarks: “Les différences réelles qui existent entre l’encéphale de l’homme et celui des singes supérieurs, sont bien minimes. Il ne faut pas se faire d’illusions à cet égard. L’homme est bien plus près des singes anthropomorphes par les caractères anatomiques de son cerveau que ceux-ci ne le sont non-seulement des autres mammifères, mais mêmes de certains quadrumanes, des guenons et des macaques.” But it would be superfluous here to give further details on the correspondence between man and the higher mammals in the structure of the brain and all other parts of the body.
It may, however, be worth while to specify a few points, not directly or obviously connected with structure, by which this correspondence or relationship is well shewn.
Man is liable to receive from the lower animals, and to communicate to them, certain diseases as hydrophobia, variola, the glanders, &c.; and this fact proves the close similarity of their tissues and blood, both in minute structure and composition, far more plainly than does their comparison under the best microscope, or by the aid of the best chemical analysis. Monkeys are liable to many of the same non-contagious diseases as we are; thus Rengger,5 who carefully observed for a long time the Cebus Azaræ in its native land, found it liable to catarrh, with the usual symptoms, and which when 12often recurrent led to consumption. These monkeys suffered also from apoplexy, inflammation of the bowels, and cataract in the eye. The younger ones when shedding their milk-teeth often died from fever. Medicines produced the same effect on them as on us. Many kinds of monkeys have a strong taste for tea, coffee, and spirituous liquors: they will also, as I have myself seen, smoke tobacco with pleasure. Brehm asserts that the natives of north-eastern Africa catch the wild baboons by exposing vessels with strong beer, by which they are made drunk. He has seen some of these animals, which he kept in confinement, in this state; and he gives a laughable account of their behaviour and strange grimaces. On the following morning they were very cross and dismal; they held their aching heads with both hands and wore a most pitiable expression: when beer or wine was offered them, they turned away with disgust, but relished the juice of lemons.6 An American monkey, an Ateles, after getting drunk on brandy, would never touch it again, and thus was wiser than many men. These trifling facts prove how similar the nerves of taste must be in monkeys and man, and how similarly their whole nervous system is affected.
Man is infested with internal parasites, sometimes causing fatal effects, and is plagued by external parasites, all of which belong to the same genera or families with those infesting other mammals. Man is subject like other mammals, birds, and even insects, to that mysterious law, which causes certain normal processes, such as gestation, as well as the maturation and duration of various diseases, to follow lunar periods.7 His wounds 13are repaired by the same process of healing; and the stumps left after the amputation of his limbs occasionally possess, especially during an early embryonic period, some power of regeneration, as in the lowest animals.8
The whole process of that most important function, the reproduction of the species, is strikingly the same in all mammals, from the first act of courtship by the male9 to the birth and nurturing of the young. Monkeys are born in almost as helpless a condition as our own infants; and in certain genera the young differ fully as much in appearance from the adults, as do our children from their full-grown parents.10 It has been urged by some writers as an important distinction, that with man the young arrive at maturity at a much later age than with any other animal; but if we look to the races of mankind which inhabit tropical countries the difference is not great, for the orang is believed not to be adult till the age of from ten to fifteen years.11 Man 14differs from woman in size, bodily strength, hairyness, &c., as well as in mind, in the same manner as do the two sexes of many mammals. It is, in short, scarcely possible to exaggerate the close correspondence in general structure, in the minute structure of the tissues, in chemical composition and in constitution, between man and the higher animals, especially the anthropomorphous apes.
Embryonic Development.—Man is developed from an ovule, about the 125th of an inch in diameter, which differs in no respect from the ovules of other animals. The embryo itself at a very early period can hardly be distinguished from that of other members of the vertebrate kingdom. At this period the arteries run in arch-like branches, as if to carry the blood to branchiæ which are not present in the higher vertebrata, though the slits on the sides of the neck still remain (f, g, fig. 1), marking their former position. At a somewhat later period, when the extremities are developed, “the feet of lizards and mammals,” as the illustrious Von Baer remarks, “the wings and feet of birds, no less than the hands and feet of man, all arise from the same fundamental form.” It is, says Prof. Huxley,12 “quite in the later stages of development that the young human being presents marked differences from the young ape, while the latter departs as much from the dog in its developments, as the man does. Startling as this last assertion may appear to be, it is demonstrably true.”
As some of my readers may never have seen a drawing of an embryo, I have given one of man and another of a dog, at about the same early stage of development, 15carefully copied from two works of undoubted accuracy.13
Fig. 1. Upper figure human embryo, from Ecker. Lower figure that of a dog, from Bischoff.
a. Fore-brain, cerebral hemispheres, &c. g. Second visceral arch.
b. Mid-brain, corpora quadrigemina. H. Vertebral columns and muscles in process of development.
c. Hind-brain, cerebellum, medulla oblongata. i. Anterior ┐
│ extremities
┘
d. Eye. K. Posterior
e. Ear. L. Tail or os coccyx.
f. First visceral arch.
16
After the foregoing statements made by such high authorities, it would be superfluous on my part to give a number of borrowed details, shewing that the embryo of man closely resembles that of other mammals. It may, however, be added that the human embryo likewise resembles in various points of structure certain low forms when adult. For instance, the heart at first exists as a simple pulsating vessel; the excreta are voided through a cloacal passage; and the os coccyx projects like a true tail, “extending considerably beyond the rudimentary legs.”14 In the embryos of all air-breathing vertebrates, certain glands called the corpora Wolffiana, correspond with and act like the kidneys of mature fishes.15 Even at a later embryonic period, some striking resemblances between man and the lower animals may be observed. Bischoff says that the convolutions of the brain in a human fœtus at the end of the seventh month reach about the same stage of development as in a baboon when adult.16 The great toe, as Prof. Owen remarks,17 “which forms the fulcrum when standing or walking, is perhaps the most characteristic 17peculiarity in the human structure;” but in an embryo, about an inch in length, Prof. Wyman18 found “that the great toe was shorter than the others, and, instead of being parallel to them, projected at an angle from the side of the foot, thus corresponding with the permanent condition of this part in the quadrumana.” I will conclude with a quotation from Huxley,19 who after asking, does man originate in a different way from a dog, bird, frog or fish? says, “the reply is not doubtful for a moment; without question, the mode of origin and the early stages of the development of man are identical with those of the animals immediately below him in the scale: without a doub
t in these respects, he is far nearer to apes, than the apes are to the dog.”
Rudiments.—This subject, though not intrinsically more important than the two last, will for several reasons be here treated with more fullness.20 Not one of the higher animals can be named which does not bear some part in a rudimentary condition; and man forms no exception to the rule. Rudimentary organs must be distinguished from those that are nascent; though in some cases the distinction is not easy. The former are either absolutely useless, such as the mammæ of male quadrupeds, or the incisor teeth of ruminants which never cut through the gums; or they are of such slight service to their present possessors, that we cannot suppose that they were developed under the conditions 18which now exist. Organs in this latter state are not strictly rudimentary, but they are tending in this direction. Nascent organs, on the other hand, though not fully developed, are of high service to their possessors, and are capable of further development. Rudimentary organs are eminently variable; and this is partly intelligible, as they are useless or nearly useless, and consequently are no longer subjected to natural selection. They often become wholly suppressed. When this occurs, they are nevertheless liable to occasional reappearance through reversion; and this is a circumstance well worthy of attention.
Disuse at that period of life, when an organ is chiefly used, and this is generally during maturity, together with inheritance at a corresponding period of life, seem to have been the chief agents in causing organs to become rudimentary. The term “disuse” does not relate merely to the lessened action of muscles, but includes a diminished flow of blood to a part or organ, from being subjected to fewer alternations of pressure, or from becoming in any way less habitually active. Rudiments, however, may occur in one sex of parts normally present in the other sex; and such rudiments, as we shall hereafter see, have often originated in a distinct manner. In some cases organs have been reduced by means of natural selection, from having become injurious to the species under changed habits of life. The process of reduction is probably often aided through the two principles of compensation and economy of growth; but the later stages of reduction, after disuse has done all that can fairly be attributed to it, and when the saving to be effected by the economy of growth would be very small,21 are difficult to understand. The final and com19plete suppression of a part, already useless and much reduced in size, in which case neither compensation nor economy can come into play, is perhaps intelligible by the aid of the hypothesis of pangenesis, and apparently in no other way. But as the whole subject of rudimentary organs has been fully discussed and illustrated in my former works,22 I need here say no more on this head.
Rudiments of various muscles have been observed in many parts of the human body;23 and not a few muscles, which are regularly present in some of the lower animals can occasionally be detected in man in a greatly reduced condition. Every one must have noticed the power which many animals, especially horses, possess of moving or twitching their skin; and this is effected by the panniculus carnosus. Remnants of this muscle in an efficient state are found in various parts of our bodies; for instance, on the forehead, by which the eyebrows are raised. The platysma myoides, which is well developed on the neck, belongs to this system, but cannot be voluntarily brought into action. Prof. Turner, of Edinburgh, has occasionally detected, as he informs me, muscular fasciculi in five different situations, namely in the axillæ, near the scapulæ, &c., all of which must be referred to the system of the panniculus. He has also shewn24 that the musculus sternalis or sternalis brutorum, which is not an extension of the rectus abdominalis, but is closely allied to the panniculus, oc20curred in the proportion of about 3 per cent. in upwards of 600 bodies: he adds, that this muscle affords “an excellent illustration of the statement that occasional and rudimentary structures are especially liable to variation in arrangement.”
Some few persons have the power of contracting the superficial muscles on their scalps; and these muscles are in a variable and partially rudimentary condition. M. A. de Candolle has communicated to me a curious instance of the long-continued persistence or inheritance of this power, as well as of its unusual development. He knows a family, in which one member, the present head of a family, could, when a youth, pitch several heavy books from his head by the movement of the scalp alone; and he won wagers by performing this feat. His father, uncle, grandfather, and all his three children possess the same power to the same unusual degree. This family became divided eight generations ago into two branches; so that the head of the above-mentioned branch is cousin in the seventh degree to the head of the other branch. This distant cousin resides in another part of France, and on being asked whether he possessed the same faculty, immediately exhibited his power. This case offers a good illustration how persistently an absolutely useless faculty may be transmitted.
The extrinsic muscles which serve to move the whole external ear, and the intrinsic muscles which move the different parts, all of which belong to the system of the panniculus, are in a rudimentary condition in man; they are also variable in development, or at least in function. I have seen one man who could draw his ears forwards, and another who could draw them backwards;25
21 and from what one of these persons told me, it is probable that most of us by often touching our ears and thus directing our attention towards them, could by repeated trials recover some power of movement. The faculty of erecting the ears and of directing them to different points of the compass, is no doubt of the highest service to many animals, as they thus perceive the point of danger; but I have never heard of a man who possessed the least power of erecting his ears,—the one movement which might be of use to him. The whole external shell of the ear may be considered a rudiment, together with the various folds and prominences (helix and anti-helix, tragus and anti-tragus, &c.) which in the lower animals strengthen and support the ear when erect, without adding much to its weight. Some authors, however, suppose that the cartilage of the shell serves to transmit vibrations to the acoustic nerve; but Mr. Toynbee,26 after collecting all the known evidence on this head, concludes that the external shell is of no distinct use. The ears of the chimpanzee and orang are curiously like those of man, and I am assured by the keepers in the Zoological Gardens that these animals never move or erect them; so that they are in an equally rudimentary condition, as far as function is concerned, as in man. Why these animals, as well as the progenitors of man, should have lost the power of erecting their ears we cannot say. It may be, though I am not quite satisfied with this view, that owing to their arboreal habits and great strength they were but little exposed to danger, and so during a lengthened period moved their ears but little, and thus gradually lost the power of moving them. This would be a parallel case with that of those large and heavy birds, 22which from inhabiting oceanic islands have not been exposed to the attacks of beasts of prey, and have consequently lost the power of using their wings for flight.
Fig. 2. Human Ear, modelled and drawn by Mr. Woolner.
a. The projecting point.
The celebrated sculptor, Mr. Woolner, informs me of one little peculiarity in the external ear, which he has often observed both in men and women, and of which he perceived the full signification. His attention was first called to the subject whilst at work on his figure of Puck, to which he had given pointed ears. He was thus led to examine the ears of various monkeys, and subsequently more carefully those of man. The peculiarity consists in a little blunt point, projecting from the inwardly folded margin, or helix. Mr. Woolner made an exact model of one such case, and has sent me the accompanying drawing. (Fig. 2.) These points not only project inwards, but often a little outwards, so that they are visible when the head is viewed from directly in front or behind. They are variable in size and somewhat in position, standing either a little higher or lower; and they sometimes occur on one ear and not on the other. Now the meaning of these projections is not, I think, doubtful; but it may be thought that they offer too trifling a character to be worth notice. This thought, howev
er, is as false as it is natural. Every character, however slight, must be the result of some definite cause; and if it occurs in many individuals deserves consideration. The helix obviously consists of the extreme margin of the ear folded inwards; and this folding appears to be in some manner connected with the23 whole external ear being permanently pressed backwards. In many monkeys, which do not stand high in the order, as baboons and some species of macacus,27 the upper portion of the ear is slightly pointed, and the margin is not at all folded inwards; but if the margin were to be thus folded, a slight point would necessarily project inwards and probably a little outwards. This could actually be observed in a specimen of the Ateles beelzebuth in the Zoological Gardens; and we may safely conclude that it is a similar structure—a vestige of formerly pointed ears—which occasionally reappears in man.
The nictitating membrane, or third eyelid, with its accessory muscles and other structures, is especially well developed in birds, and is of much functional importance to them, as it can be rapidly drawn across the whole eye-ball. It is found in some reptiles and amphibians, and in certain fishes, as in sharks. It is fairly well developed in the two lower divisions of the mammalian series, namely, in the monotremata and marsupials, and in some few of the higher mammals, as in the walrus. But in man, the quadrumana, and most other mammals, it exists, as is admitted by all anatomists, as a mere rudiment, called the semilunar fold.28
The sense of smell is of the highest importance to the greater number of mammals—to some, as the ruminants, in warning them of danger; to others, as the 24carnivora, in finding their prey; to others, as the wild boar, for both purposes combined. But the sense of smell is of extremely slight service, if any, even to savages, in whom it is generally more highly developed than in the civilised races. It does not warn them of danger, nor guide them to their food; nor does it prevent the Esquimaux from sleeping in the most fetid atmosphere, nor many savages from eating half-putrid meat. Those who believe in the principle of gradual evolution, will not readily admit that this sense in its present state was originally acquired by man, as he now exists. No doubt he inherits the power in an enfeebled and so far rudimentary condition, from some early progenitor, to whom it was highly serviceable and by whom it was continually used. We can thus perhaps understand how it is, as Dr. Maudsley has truly remarked,29 that the sense of smell in man “is singularly effective in recalling vividly the ideas and images of forgotten scenes and places;” for we see in those animals, which have this sense highly developed, such as dogs and horses, that old recollections of persons and places are strongly associated with their odour.
The Descent of Man Page 2